LW Dimensions

Technical Data by Dimensions

Nominal Diameter No of
strands
Cross section
of conductor
Resistance at 20 °C Outer diameter
unserved
Outer diameter
single served
Outer diameter
double served
1 kg HF-Litzwire unserved
        Grade 1 Grade 2 Grade 1 Grade 2 Grade 1 Grade 2 Grade 1 Grade 2
      nom min max min max min max min max min max min max min max Length Length
[mm] # [mm²] [Ohm/m] [Ohm/m] [Ohm/m] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m/kg] [m/kg]
0.020 10 0.0031 5.5500 4.9950 6.1050 0.087 0.095 0.099 0.107 0.112 0.135 0.124 0.147 0.137 0.175 0.149 0.187 33,344.48 31,689.48
0.020 12 0.0038 4.6550 4.1625 5.0875 0.095 0.104 0.108 0.177 0.120 0.144 0.133 0.157 0.145 0.184 0.158 0.197 22,787.07 26,407.90
0.020 16 0.0050 3.4688 3.1219 3.8156 0.111 0.121 0.126 0.138 0.136 0.161 0.151 0.176 0.163 0.201 0.176 0.216 20,840.30 19,805.93
0.020 20 0.0063 2.7750 2.4975 3.0525 0.125 0.136 0.142 0.153 0.150 0.176 0.176 0.193 0.175 0.216 0.192 0.233 16,672.24 15,844.74
0.020 30 0.0094 1.8500 1.6650 2.0350 0.154 0.168 0.175 0.189 0.179 0.208 0.200 0.229 0.204 0.248 0.225 0.269 11,114.83 10,583.16
0.020 60 0.0188 0.9434 0.8488 1.0375 0.218 0.238 0.248 0.268 0.243 0.278 0.273 0.308 0.268 0.318 0.298 0.348 5557.41 5281.58
0.020 120 0.0377 0.4716 0.4244 0.5187 0.308 0.337 0.351 0.379 0.333 0.377 0.376 0.419 0.358 0.417 0.401 0.459 2778.71 2640.79
0.020 180 0.0565 0.3204 0.2884 0.3525 0.378 0.412 0.429 0.464 0.403 0.452 0.454 0.504 0.428 0.492 0.479 0.544 1852.47 1760.53
0.020 200 0.0628 0.2829 0.2546 0.3112 0.398 0.434 0.453 0.489 0.423 0.474 0.478 0.529 0.448 0.514 0.503 0.569 1667.22 1584.47
0.020 270 0.0848 0.2136 0.1923 0.2350 0.463 0.505 0.526 0.568 0.488 0.545 0.551 0.608 0.513 0.585 0.576 0.648 1234.98 1173.68
0.020 600 0.1885 0.0961 0.0865 0.1057 0.690 0.752 0.784 0.847 0.715 0.792 0.809 0.887 0.740 0.832 0.834 0.927 555.74 528.16
0.020 800 0.2513 0.0721 0.0649 0.0793 0.796 0.869 0.905 0.978 0.821 0.909 0.930 1.018 0.846 0.949 0.955 1.058 416.81 396.12
0.020 1000 0.3142 0.0577 0.0519 0.0634 0.890 0.971 1.012 1.093 0.915 1.011 1.037 1.133 0.940 1.051 1.062 1.173 333.44 316.89
0.030 10 0.0071 2.4667 2.2200 2.7133 0.130 0.146 0.150 0.162 0.155 0.186 0.175 0.202 0.180 0.226 0.200 0.242 14,738.90 14,001.74
0.030 12 0.0085 2.0556 1.8500 2.2611 0.143 0.160 0.165 0.178 0.168 0.200 0.190 0.218 0.193 0.240 0.215 0.258 12,282.41 11,668.12
0.030 16 0.0113 1.5417 1.3875 1.6958 0.168 0.186 0.192 0.207 0.191 0.226 0.217 0.247 0.216 0.266 0.242 0.287 9211.81 8751.09
0.030 20 0.0141 1.2333 1.1100 1.3567 0.187 0.210 0.216 0.233 0.212 0.250 0.241 0.273 0.237 0.290 0.266 0.313 7369.45 7000.87
0.030 30 0.0212 0.8222 0.7400 0.9044 0.231 0.259 0.266 0.287 0.256 0.299 0.291 0.327 0.281 0.339 0.316 0.367 4912.97 4667.25
0.030 60 0.0424 0.4192 0.3773 0.4611 0.327 0.367 0.377 0.407 0.352 0.407 0.402 0.447 0.377 0.447 0.427 0.487 2456.48 2333.62
0.030 90 0.0636 0.2794 0.2515 0.3074 0.401 0.449 0.461 0.498 0.426 0.489 0.486 0.538 0.451 0.529 0.511 0.578 1637.66 1555.75
0.030 120 0.0848 0.2096 0.1886 0.2305 0.463 0.519 0.533 0.575 0.488 0.559 0.558 0.615 0.513 0.599 0.583 0.655 1228.24 1166.81
0.030 180 0.1272 0.1424 0.1282 0.1567 0.567 0.635 0.653 0.704 0.592 0.675 0.678 0.744 0.617 0.715 0.703 0.784 818.83 777.87
0.030 200 0.1414 0.1258 0.1132 0.1383 0.597 0.670 0.688 0.742 0.622 0.710 0.713 0.782 0.647 0.750 0.738 0.822 736.94 700.09
0.030 270 0.1909 0.0949 0.0854 0.1044 0.694 0.778 0.799 0.862 0.719 0.818 0.824 0.902 0.744 0.858 0.849 0.942 545.89 518.58
0.030 600 0.4241 0.0427 0.0385 0.0470 1.035 1.160 1.191 1.285 1.060 1.200 1.216 1.325 1.085 1.240 1.241 1.365 245.65 233.36
0.030 800 0.5655 0.0320 0.0288 0.0352 1.195 1.340 1.376 1.484 1.220 1.380 1.401 1.524 1.245 1.420 1.426 1.564 184.24 175.02
0.030 1000 0.7069 0.0256 0.0231 0.0282 1.336 1.498 1.538 1.660 1.361 1.538 1.563 1.700 1.386 1.578 1.588 1.740 147.39 140.02
0.040 4 0.0050 3.4688 3.1322 3.8051 0.110 0.123 0.125 0.135 0.135 0.163 0.150 0.175 0.160 0.203 0.175 0.215 20,755.04 19,805.93
0.040 8 0.0101 1.7344 1.5661 1.9026 0.156 0.173 0.177 0.191 0.181 0.213 0.202 0.231 0.206 0.253 0.227 0.271 10,377.52 9902.96
0.040 10 0.0126 1.3875 1.2529 1.5220 0.174 0.194 0.198 0.213 0.199 0.234 0.223 0.253 0.224 0.274 0.248 0.293 8302.02 7922.37
0.040 15 0.0188 0.9250 0.8352 1.0147 0.215 0.239 0.244 0.264 0.240 0.279 0.269 0.304 0.265 0.319 0.294 0.344 5534.68 5281.58
0.040 20 0.0251 0.6938 0.6264 0.7610 0.250 0.279 0.284 0.307 0.275 0.318 0.309 0.347 0.300 0.358 0.334 0.387 4151.01 3961.19
0.040 25 0.0314 0.5550 0.5011 0.6088 0.282 0.314 0.320 0.346 0.307 0.354 0.345 0.386 0.332 0.394 0.370 0.426 3320.81 3168.95
0.040 30 0.0377 0.4625 0.4176 0.5073 0.308 0.344 0.351 0.379 0.333 0.384 0.376 0.419 0.358 0.424 0.401 0.459 2767.34 2640.79
0.040 35 0.0440 0.3964 0.3580 0.4349 0.333 0.371 0.379 0.409 0.358 0.411 0.404 0.449 0.383 0.451 0.429 0.489 2372.00 2263.53
0.040 45 0.0565 0.3083 0.2784 0.3382 0.378 0.421 0.429 0.464 0.403 0.461 0.454 0.504 0.428 0.501 0.479 0.544 1844.89 1760.53
0.040 60 0.0754 0.2358 0.2129 0.2586 0.436 0.486 0.496 0.535 0.461 0.526 0.521 0.575 0.486 0.566 0.546 0.615 1383.67 1320.40
0.040 75 0.0942 0.1886 0.1703 0.2069 0.488 0.543 0.554 0.599 0.513 0.583 0.579 0.639 0.538 0.623 0.604 0.679 1106.94 1056.32
0.040 90 0.1131 0.1572 0.1419 0.1724 0.534 0.595 0.607 0.656 0.559 0.635 0.632 0.696 0.584 0.675 0.657 0.736 922.45 880.26
0.040 105 0.1319 0.1347 0.1217 0.1478 0.577 0.643 0.656 0.708 0.602 0.683 0.681 0.748 0.627 0.723 0.706 0.788 790.67 754.51
0.040 180 0.2262 0.0801 0.0723 0.0879 0.756 0.841 0.859 0.927 0.781 0.881 0.884 0.967 0.806 0.921 0.909 1.007 461.22 440.13
0.040 225 0.2827 0.0641 0.0579 0.0703 0.845 0.941 0.960 1.037 0.870 0.981 0.985 1.077 0.895 1.021 1.010 1.117 368.98 352.11
0.040 270 0.3393 0.0534 0.0482 0.0586 0.925 1.031 1.052 1.136 0.950 1.071 1.077 1.176 0.975 1.111 1.102 1.216 307.48 293.42
0.040 600 0.7540 0.0240 0.0217 0.0264 1.380 1.536 1.568 1.693 1.405 1.576 1.593 1.733 1.430 1.616 1.618 1.773 138.37 132.04
0.040 800 1.0053 0.0180 0.0163 0.0198 1.593 1.774 1.810 1.955 1.618 1.814 1.835 1.995 1.643 1.854 1.860 2.035 103.78 99.03
0.040 1000 1.2566 0.0144 0.0130 0.0158 1.781 1.983 2.024 2.186 1.806 2.023 2.049 2.226 1.831 2.063 2.074 2.266 83.02 79.22
0.050 4 0.0079 2.2200 2.0202 2.4198 0.138 0.150 0.153 0.165 0.163 0.190 0.178 0.205 0.188 0.230 0.203 0.245 13,337.79 12,809.17
0.050 8 0.0157 1.1100 1.0101 1.2099 0.194 0.212 0.216 0.233 0.219 0.252 0.241 0.273 0.244 0.292 0.266 0.313 6668.90 6404.59
0.050 10 0.0196 0.8880 0.8081 0.9679 0.217 0.237 0.241 0.261 0.242 0.277 0.266 0.301 0.267 0.317 0.291 0.341 5335.12 5123.67
0.050 15 0.0295 0.5920 0.5387 0.6453 0.268 0.293 0.298 0.322 0.293 0.333 0.323 0.362 0.318 0.373 0.348 0.402 3556.74 3415.78
0.050 20 0.0393 0.4440 0.4040 0.4840 0.312 0.341 0.346 0.375 0.337 0.381 0.371 0.415 0.362 0.421 0.396 0.455 2667.56 2561.83
0.050 25 0.0491 0.3552 0.3232 0.3872 0.352 0.384 0.390 0.422 0.377 0.424 0.415 0.462 0.402 0.464 0.440 0.502 2134.05 2049.47
0.050 30 0.0589 0.2960 0.2694 0.3226 0.386 0.421 0.428 0.463 0.411 0.461 0.453 0.503 0.436 0.501 0.478 0.543 1778.37 1707.89
0.050 35 0.0687 0.2537 0.2309 0.2765 0.416 0.454 0.462 0.500 0.441 0.494 0.487 0.540 0.466 0.534 0.512 0.580 1524.32 1463.91
0.050 45 0.0884 0.1973 0.1796 0.2151 0.472 0.515 0.524 0.567 0.497 0.555 0.549 0.607 0.522 0.595 0.574 0.647 1185.58 1138.59
0.050 60 0.1178 0.1509 0.1373 0.1645 0.545 0.595 0.605 0.654 0.570 0.635 0.630 0.694 0.595 0.675 0.655 0.734 889.19 853.94
0.050 75 0.1473 0.1207 0.1099 0.1316 0.610 0.665 0.676 0.732 0.635 0.705 0.701 0.772 0.660 0.745 0.726 0.812 711.35 683.16
0.050 90 0.1767 0.1006 0.0915 0.1097 0.668 0.729 0.741 0.801 0.693 0.769 0.766 0.841 0.718 0.809 0.791 0.881 592.79 569.30
0.050 105 0.2062 0.0862 0.0785 0.0940 0.721 0.787 0.800 0.866 0.746 0.827 0.825 0.906 0.771 0.867 0.850 0.946 508.11 487.97
0.050 180 0.3534 0.0513 0.0467 0.0559 0.945 1.030 1.048 1.133 0.970 1.070 1.073 1.173 0.995 1.110 1.098 1.213 296.40 284.65
0.050 225 0.4418 0.0410 0.0373 0.0447 1.056 1.152 1.171 1.267 1.081 1.192 1.196 1.307 1.106 1.232 1.221 1.347 237.12 227.72
0.050 270 0.5301 0.0342 0.0311 0.0373 1.157 1.262 1.283 1.388 1.182 1.302 1.308 1.428 1.207 1.342 1.333 1.468 197.60 189.77
0.050 600 1.1781 0.0154 0.0140 0.0168 1.724 1.881 1.913 2.069 1.749 1.921 1.938 2.109 1.774 1.961 1.963 2.149 88.92 85.39
0.050 800 1.5708 0.0115 0.0105 0.0126 1.991 2.172 2.208 2.389 2.016 2.212 2.233 2.429 2.041 2.252 2.258 2.469 66.69 64.05
0.050 1000 1.9635 0.0092 0.0084 0.0101 2.226 2.429 2.469 2.671 2.251 2.469 2.494 2.711 2.276 2.509 2.519 2.751 53.35 51.24
0.071 4 0.0158 1.1010 1.0049 1.2106 0.195 0.210 0.213 0.228 0.220 0.250 0.238 0.268 0.245 0.290 0.263 0.308 6634.43 6419.69
0.071 8 0.0317 0.5505 0.5025 0.6053 0.276 0.297 0.301 0.322 0.301 0.337 0.326 0.362 0.326 0.377 0.351 0.402 3317.21 3209.85
0.071 10 0.0396 0.4404 0.4020 0.4842 0.308 0.332 0.336 0.360 0.333 0.372 0.361 0.400 0.358 0.412 0.386 0.440 2653.77 2567.88
0.071 15 0.0594 0.2936 0.2680 0.3228 0.381 0.410 0.415 0.444 0.406 0.450 0.440 0.484 0.431 0.490 0.465 0.524 1769.18 1711.92
0.071 20 0.0792 0.2202 0.2010 0.2421 0.443 0.477 0.483 0.517 0.468 0.517 0.508 0.567 0.493 0.557 0.533 0.597 1326.89 1283.94
0.071 25 0.0990 0.1762 0.1608 0.1937 0.499 0.538 0.544 0.582 0.524 0.578 0.569 0.622 0.549 0.618 0.594 0.662 1061.51 1027.15
0.071 30 0.1188 0.1468 0.1340 0.1614 0.547 0.589 0.596 0.638 0.572 0.629 0.621 0.678 0.597 0.669 0.646 0.718 884.59 855.96
0.071 35 0.1386 0.1258 0.1148 0.1384 0.591 0.636 0.644 0.689 0.616 0.676 0.669 0.729 0.641 0.716 0.694 0.769 758.22 733.68
0.071 45 0.1782 0.0979 0.0893 0.1076 0.670 0.721 0.730 0.781 0.695 0.761 0.755 0.821 0.720 0.801 0.780 0.861 589.73 570.64
0.071 60 0.2376 0.0748 0.0683 0.0823 0.773 0.833 0.843 0.902 0.798 0.873 0.868 0.942 0.823 0.913 0.893 0.982 442.30 427.98
0.071 75 0.2969 0.0699 0.0546 0.0658 0.865 0.931 0.942 1.009 0.890 0.971 0.967 1.049 0.915 1.011 0.992 1.089 353.84 342.38
0.071 90 0.3563 0.0499 0.0455 0.0549 0.947 1.020 1.032 1.105 0.972 1.060 1.057 1.145 0.997 1.100 1.082 1.185 294.86 285.32
0.071 105 0.4157 0.0428 0.0390 0.0470 1.023 1.102 1.115 1.194 1.048 1.142 1.140 1.234 1.073 1.182 1.165 1.274 252.74 244.56
0.071 135 0.5345 0.0333 0.0304 0.0366 1.160 1.249 1.264 1.353 1.185 1.289 1.289 1.393 1.210 1.329 1.314 1.433 196.58 190.21
0.071 180 0.7127 0.0254 0.0232 0.0280 1.339 1.443 1.460 1.563 1.364 1.483 1.485 1.603 1.389 1.523 1.510 1.643 147.43 142.66
0.071 225 0.8908 0.0203 0.0186 0.0224 1.498 1.613 1.632 1.747 1.523 1.653 1.657 1.787 1.548 1.693 1.682 1.827 117.95 114.13
0.071 270 1.0690 0.0170 0.0155 0.0186 1.641 1.767 1.788 1.914 1.666 1.807 1.813 1.954 1.691 1.847 1.838 1.994 98.29 95.11
0.071 600 2.3755 0.0076 0.0070 0.0084 2.446 2.634 2.665 2.853 2.471 2.674 2.690 2.893 2.496 2.714 2.715 2.933 44.23 42.80
0.071 800 3.1674 0.0057 0.0052 0.0063 2.824 3.041 3.077 3.295 2.849 3.081 3.102 3.335 2.874 3.121 3.127 3.375 33.17 32.10
0.071 1000 3.9592 0.0046 0.0042 0.0050 3.157 3.400 3.441 3.683 3.182 3.440 3.466 3.723 3.207 3.480 3.491 3.763 26.54 25.68
0.080 4 0.0201 0.8672 0.7988 0.9441 0.218 0.235 0.238 0.253 0.243 0.275 0.263 0.293 0.268 0.315 0.288 0.333 5241.94 5081.45
0.080 8 0.0402 0.4336 0.3994 0.4721 0.308 0.332 0.336 0.357 0.333 0.372 0.361 0.397 0.358 0.412 0.386 0.437 2620.97 2540.72
0.080 10 0.0503 0.3469 0.3195 0.3777 0.344 0.372 0.376 0.399 0.369 0.412 0.401 0.439 0.394 0.452 0.426 0.479 2096.78 2032.58
0.080 15 0.0754 0.2312 0.2130 0.2518 0.425 0.459 0.464 0.493 0.450 0.499 0.489 0.533 0.475 0.539 0.514 0.573 1397.85 1355.05
0.080 20 0.1005 0.1734 0.1598 0.1888 0.494 0.534 0.540 0.574 0.519 0.574 0.565 0.614 0.544 0.614 0.590 0.654 1048.39 1016.29
0.080 25 0.1257 0.1387 0.1278 0.1511 0.557 0.602 0.608 0.646 0.582 0.642 0.633 0.686 0.607 0.682 0.658 0.726 838.71 813.03
0.080 30 0.1508 0.1156 0.1065 0.1259 0.610 0.659 0.666 0.708 0.635 0.699 0.691 0.748 0.660 0.739 0.716 0.788 698.93 677.53
0.080 35 0.1759 0.0991 0.0913 0.1079 0.659 0.712 0.719 0.765 0.684 0.752 0.744 0.805 0.709 0.792 0.769 0.845 599.08 580.74
0.080 45 0.2262 0.0771 0.0710 0.0839 0.747 0.807 0.816 0.867 0.772 0.847 0.841 0.907 0.797 0.887 0.866 0.947 465.95 451.68
0.080 60 0.3016 0.0589 0.0543 0.0642 0.863 0.932 0.942 1.001 0.888 0.972 0.967 1.041 0.913 1.012 0.992 1.081 349.46 338.78
0.080 75 0.3770 0.0472 0.0434 0.0513 0.964 1.042 1.053 1.120 0.989 1.082 1.078 1.160 1.014 1.122 1.103 1.200 279.57 271.01
0.080 90 0.4524 0.0393 0.0362 0.0428 1.056 1.141 1.154 1.226 1.081 1.181 1.179 1.266 1.106 1.221 1.204 1.306 232.98 225.84
0.080 105 0.5278 0.0337 0.0310 0.0367 1.141 1.233 1.246 1.325 1.166 1.273 1.271 1.365 1.191 1.313 1.296 1.405 199.69 193.58
0.080 180 0.9048 0.0200 0.0184 0.0218 1.494 1.614 1.631 1.734 1.519 1.654 1.656 1.774 1.544 1.694 1.681 1.814 116.49 112.92
0.080 225 1.1310 0.0160 0.0148 0.0174 1.670 1.805 1.824 1.939 1.695 1.845 1.849 1.979 1.720 1.885 1.874 2.019 93.19 90.34
0.080 270 1.3572 0.0134 0.0123 0.0145 1.830 1.977 1.998 2.124 1.855 2.017 2.023 2.164 1.880 2.057 2.048 2.204 77.66 75.28
0.080 600 3.0159 0.0060 0.0055 0.0065 2.728 2.947 2.979 3.167 2.753 2.987 3.004 3.207 2.778 3.027 3.029 3.247 34.95 33.88
0.080 800 4.0212 0.0045 0.0042 0.0049 3.150 3.403 3.439 3.657 3.175 3.443 3.464 3.697 3.200 3.483 3.489 3.737 26.21 25.41
0.080 1000 5.0265 0.0036 0.0033 0.0039 3.522 3.805 3.845 4.088 3.547 3.845 3.870 4.128 3.572 3.885 3.895 4.168 20.97 20.33
0.100 4 0.0314 0.5550 0.5187 0.5949 0.270 0.293 0.295 0.313 0.295 0.333 0.320 0.353 0.320 0.373 0.345 0.393 3361.62 3263.16
0.100 8 0.0628 0.2775 0.2594 0.2975 0.382 0.414 0.417 0.442 0.407 0.454 0.442 0.482 0.432 0.494 0.467 0.522 1680.81 1631.58
0.100 10 0.0785 0.2220 0.2075 0.2380 0.427 0.462 0.466 0.494 0.452 0.502 0.491 0.534 0.477 0.542 0.516 0.574 1344.65 1305.26
0.100 15 0.1178 0.1480 0.1383 0.1587 0.527 0.571 0.576 0.610 0.552 0.611 0.601 0.650 0.577 0.651 0.626 0.690 896.43 870.18
0.100 20 0.1571 0.1110 0.1037 0.1190 0.613 0.665 0.670 0.710 0.638 0.705 0.695 0.750 0.663 0.745 0.720 0.790 672.32 652.63
0.100 25 0.1963 0.0888 0.0830 0.0952 0.691 0.749 0.755 0.800 0.716 0.789 0.780 0.840 0.741 0.829 0.805 0.880 537.86 522.11
0.100 30 0.2356 0.0740 0.0692 0.0793 0.757 0.820 0.827 0.876 0.782 0.860 0.852 0.916 0.807 0.900 0.877 0.956 448.22 435.09
0.100 35 0.2749 0.0634 0.0593 0.0680 0.818 0.886 0.894 0.947 0.843 0.926 0.919 0.987 0.868 0.966 0.944 1.027 384.18 372.93
0.100 40 0.3142 0.0555 0.0519 0.0595 0.874 0.947 0.955 1.012 0.899 0.987 0.980 1.052 0.924 1.027 1.005 1.092 336.16 326.32
0.100 45 0.3534 0.0493 0.0461 0.0529 0.927 1.005 1.013 1.073 0.952 1.045 1.038 1.113 0.977 1.085 1.063 1.153 298.81 290.06
0.100 60 0.4712 0.0377 0.0353 0.0404 1.071 1.160 1.170 1.239 1.096 1.200 1.195 1.279 1.121 1.240 1.220 1.319 224.11 217.54
0.100 75 0.5890 0.0302 0.0282 0.0324 1.197 1.297 1.308 1.386 1.222 1.337 1.333 1.426 1.247 1.377 1.358 1.466 179.29 174.04
0.100 90 0.7069 0.0252 0.0235 0.0270 1.311 1.421 1.433 1.518 1.336 1.461 1.458 1.558 1.361 1.501 1.483 1.598 149.41 145.03
0.100 105 0.8247 0.0216 0.0201 0.0231 1.417 1.535 1.548 1.640 1.442 1.575 1.573 1.680 1.467 1.615 1.598 1.720 128.06 124.31
0.100 120 0.9425 0.0189 0.0176 0.0202 1.514 1.641 1.655 1.753 1.539 1.681 1.680 1.793 1.564 1.721 1.705 1.833 112.05 108.77
0.100 160 1.2566 0.0141 0.0132 0.0152 1.749 1.894 1.911 2.024 1.774 1.934 1.936 2.064 1.799 1.974 1.961 2.104 84.04 81.58
0.100 180 1.4137 0.0126 0.0118 0.0135 1.855 2.009 2.026 2.147 1.880 2.049 2.051 2.187 1.905 2.089 2.076 2.227 74.70 72.51
0.100 200 1.5708 0.0113 0.0106 0.0121 1.955 2.118 2.136 2.263 1.980 2.158 2.161 2.303 2.005 2.198 2.186 2.343 67.23 65.26
0.100 225 1.7671 0.0103 0.0096 0.0110 2.074 2.246 2.266 2.400 2.099 2.286 2.291 2.440 2.124 2.326 2.316 2.480 59.76 58.01
0.100 270 2.1206 0.0085 0.0080 0.0092 2.272 2.461 2.482 2.629 2.297 2.501 2.507 2.669 2.322 2.541 2.532 2.709 49.80 48.34
0.100 600 4.7124 0.0038 0.0036 0.0041 3.386 3.668 3.700 3.919 3.411 3.708 3.725 3.959 3.436 3.748 3.750 3.999 22.41 21.75
0.100 800 6.2832 0.0029 0.0027 0.0031 3.910 4.236 4.272 4.525 3.935 4.276 4.297 4.565 3.960 4.316 4.322 4.605 16.81 16.32
0.120 4 0.0452 0.3853 0.3636 0.4090 0.325 0.345 0.348 0.370 0.350 0.385 0.373 0.410 0.375 0.425 0.398 0.450 2340.72 2280.74
0.120 8 0.0905 0.1927 0.1818 0.2045 0.460 0.488 0.491 0.523 0.485 0.528 0.516 0.563 0.510 0.568 0.541 0.603 1170.36 1140.37
0.120 10 0.1131 0.1541 0.1455 0.1636 0.514 0.545 0.549 0.585 0.539 0.585 0.574 0.625 0.564 0.625 0.599 0.665 936.29 912.30
0.120 15 0.1696 0.1027 0.0970 0.1091 0.634 0.673 0.678 0.722 0.659 0.713 0.703 0.762 0.684 0.753 0.728 0.802 624.19 608.20
0.120 20 0.2262 0.0771 0.0727 0.0818 0.738 0.784 0.789 0.841 0.763 0.824 0.814 0.881 0.788 0.864 0.839 0.921 468.14 456.15
0.120 25 0.2827 0.0616 0.0582 0.0654 0.832 0.883 0.890 0.947 0.857 0.923 0.915 0.987 0.882 0.963 0.940 1.027 374.52 364.92
0.120 30 0.3393 0.0514 0.0485 0.0545 0.911 0.967 0.975 1.038 0.936 1.007 1.000 1.078 0.961 1.047 1.025 1.118 312.10 304.10
0.120 35 0.3958 0.0440 0.0416 0.0467 0.984 1.045 1.053 1.121 1.009 1.085 1.078 1.161 1.034 1.125 1.103 1.201 267.51 260.66
0.120 45 0.5089 0.0342 0.0323 0.0364 1.116 1.185 1.194 1.271 1.141 1.225 1.219 1.311 1.166 1.265 1.244 1.351 208.06 202.73
0.120 60 0.6786 0.0262 0.0247 0.0278 1.289 1.368 1.378 1.467 1.314 1.408 1.403 1.507 1.339 1.448 1.428 1.547 156.05 152.05
0.120 75 0.8482 0.0210 0.0198 0.0222 1.441 1.530 1.541 1.641 1.466 1.570 1.566 1.681 1.491 1.610 1.591 1.721 124.84 121.64
0.120 90 1.0179 0.0175 0.0165 0.0185 1.579 1.676 1.688 1.797 1.604 1.716 1.713 1.837 1.629 1.756 1.738 1.877 104.03 101.37
0.120 105 1.1875 0.0150 0.0141 0.0159 1.705 1.810 1.823 1.941 1.730 1.850 1.848 1.981 1.755 1.890 1.873 2.021 89.17 86.89
0.120 180 2.0358 0.0087 0.0082 0.0093 2.232 2.370 2.387 2.542 2.257 2.410 2.412 2.582 2.282 2.450 2.437 2.622 52.02 50.68
0.120 225 2.5447 0.0071 0.0067 0.0076 2.496 2.650 2.669 2.842 2.521 2.690 2.694 2.882 2.546 2.730 2.719 2.922 41.61 40.55
0.120 270 3.0536 0.0059 0.0056 0.0063 2.734 2.902 2.924 3.113 2.759 2.942 2.949 3.153 2.784 2.982 2.974 3.193 34.68 33.79
0.120 600 6.7858 0.0027 0.0025 0.0028 4.076 4.327 4.358 4.640 4.101 4.367 4.383 4.680 4.126 4.407 4.408 4.720 15.60 15.20
0.140 4 0.0616 0.2832 0.2691 0.2982 0.378 0.400 0.403 0.428 0.403 0.440 0.428 0.468 0.428 0.480 0.453 0.508 1723.00 1681.32
0.140 10 0.1539 0.1133 0.1076 0.1193 0.597 0.632 0.636 0.676 0.622 0.672 0.661 0.716 0.647 0.712 0.686 0.756 689.20 672.53
0.140 20 0.3079 0.0566 0.0538 0.0596 0.858 0.909 0.914 0.971 0.883 0.949 0.939 1.011 0.908 0.989 0.964 1.051 344.60 336.26
0.140 30 0.4618 0.0378 0.0359 0.0398 1.059 1.122 1.129 1.199 1.084 1.162 1.154 1.239 1.109 1.202 1.179 1.279 229.73 224.18
0.140 45 0.6927 0.0252 0.0239 0.0265 1.297 1.374 1.382 1.468 1.322 1.414 1.407 1.508 1.347 1.454 1.432 1.548 153.16 149.45
0.140 60 0.9236 0.0192 0.0183 0.0203 1.497 1.586 1.596 1.695 1.522 1.626 1.621 1.735 1.547 1.666 1.646 1.775 114.87 112.09
0.140 75 1.1545 0.0154 0.0146 0.0162 1.674 1.774 1.785 1.896 1.699 1.814 1.810 1.936 1.724 1.854 1.835 1.976 91.89 89.67
0.140 90 1.3854 0.0128 0.0122 0.0135 1.834 1.943 1.955 2.076 1.859 1.983 1.980 2.116 1.884 2.023 2.005 2.156 76.58 74.73
0.140 100 1.5394 0.0115 0.0110 0.0122 1.933 2.048 2.061 2.189 1.958 2.088 2.086 2.229 1.983 2.128 2.111 2.269 68.92 67.25
0.140 120 1.8473 0.0096 0.0091 0.0101 2.117 2.243 2.257 2.398 2.142 2.283 2.282 2.438 2.167 2.323 2.307 2.478 57.43 56.04
0.140 150 2.3091 0.0077 0.0073 0.0081 2.367 2.508 2.524 2.681 2.392 2.548 2.549 2.721 2.417 2.588 2.574 2.761 45.95 44.84
0.140 200 3.0788 0.0058 0.0055 0.0061 2.733 2.896 2.914 3.095 2.758 2.936 2.939 3.135 2.783 2.976 2.964 3.175 34.46 33.63
0.140 225 3.4636 0.0052 0.0050 0.0055 2.899 3.072 3.091 3.283 2.924 3.112 3.116 3.323 2.949 3.152 3.141 3.363 30.63 29.89
0.140 270 4.1563 0.0044 0.0041 0.0046 3.176 3.365 3.386 3.597 3.201 3.405 3.411 3.637 3.226 3.445 3.436 3.677 25.53 24.91
0.150 4 0.0707 0.2467 0.2351 0.2591 0.405 0.428 0.430 0.455 0.430 0.468 0.455 0.495 0.455 0.508 0.480 0.535 1501.26 1467.40
0.150 10 0.1767 0.0987 0.0940 0.1036 0.640 0.676 0.680 0.719 0.665 0.716 0.705 0.759 0.690 0.756 0.730 0.799 600.51 586.96
0.150 20 0.3534 0.0493 0.0470 0.0518 0.920 0.971 0.977 1.034 0.945 1.011 1.002 1.074 0.970 1.051 1.027 1.114 300.25 293.48
0.150 30 0.5301 0.0329 0.0313 0.0345 1.136 1.199 1.206 1.276 1.161 1.239 1.231 1.316 1.186 1.279 1.256 1.356 200.17 195.65
0.150 45 0.7952 0.0219 0.0209 0.0230 1.391 1.468 1.477 1.563 1.416 1.508 1.502 1.603 1.441 1.548 1.527 1.643 133.45 130.44
0.150 60 1.0603 0.0168 0.0160 0.0176 1.606 1.695 1.705 1.805 1.631 1.735 1.730 1.845 1.656 1.775 1.755 1.885 100.08 97.83
0.150 75 1.3254 0.0134 0.0128 0.0141 1.796 1.896 1.907 2.017 1.821 1.936 1.932 2.057 1.846 1.976 1.957 2.097 80.07 78.26
0.150 90 1.5904 0.0112 0.0107 0.0117 1.967 2.076 2.089 2.210 1.992 2.116 2.114 2.250 2.017 2.156 2.139 2.290 66.72 65.22
0.150 100 1.7671 0.0101 0.0096 0.0106 2.074 2.189 2.202 2.330 2.099 2.229 2.227 2.370 2.124 2.269 2.252 2.410 60.05 58.70
0.150 120 2.1206 0.0084 0.0080 0.0088 2.272 2.398 2.412 2.552 2.297 2.438 2.437 2.592 2.322 2.478 2.462 2.632 50.04 48.91
0.150 150 2.6507 0.0067 0.0064 0.0070 2.540 2.681 2.696 2.853 2.565 2.721 2.721 2.893 2.590 2.761 2.746 2.933 40.03 39.13
0.150 200 3.5343 0.0050 0.0048 0.0053 2.933 3.095 3.114 3.295 2.958 3.135 3.139 3.335 2.983 3.175 3.164 3.375 30.03 29.35
0.150 225 3.9761 0.0046 0.0043 0.0048 3.110 3.283 3.302 3.494 3.135 3.323 3.327 3.534 3.160 3.363 3.352 3.574 26.69 26.09
0.150 270 4.7713 0.0038 0.0036 0.0040 3.407 3.597 3.618 3.828 3.432 3.637 3.643 3.868 3.457 3.677 3.668 3.908 22.24 21.74
0.160 4 0.0804 0.2168 0.2071 0.2271 0.430 0.455 0.458 0.485 0.455 0.495 0.483 0.525 0.480 0.535 0.508 0.565 1321.05 1290.51
0.160 10 0.2011 0.0867 0.0828 0.0908 0.680 0.719 0.723 0.767 0.705 0.759 0.748 0.807 0.730 0.799 0.773 0.847 528.42 516.20
0.160 20 0.4021 0.0434 0.0414 0.0454 0.977 1.034 1.039 1.102 1.002 1.074 1.064 1.142 1.027 1.114 1.089 1.182 264.21 258.10
0.160 30 0.6032 0.0289 0.0276 0.0303 1.206 1.276 1.283 1.360 1.231 1.316 1.308 1.400 1.256 1.356 1.333 1.440 176.14 172.07
0.160 45 0.9048 0.0193 0.0184 0.0202 1.477 1.563 1.571 1.666 1.502 1.603 1.596 1.706 1.527 1.643 1.621 1.746 117.43 114.71
0.160 60 1.2064 0.0147 0.0141 0.0154 1.705 1.805 1.814 1.923 1.730 1.845 1.839 1.963 1.755 1.885 1.864 2.003 88.07 86.03
0.160 75 1.5080 0.0118 0.0113 0.0123 1.907 2.017 2.029 2.151 1.932 2.057 2.054 2.191 1.957 2.097 2.079 2.231 70.46 68.83
0.160 90 1.8096 0.0098 0.0094 0.0103 2.089 2.210 2.222 2.356 2.114 2.250 2.247 2.396 2.139 2.290 2.272 2.436 58.71 57.36
0.160 100 2.0106 0.0088 0.0084 0.0093 2.202 2.330 2.342 2.483 2.227 2.370 2.367 2.523 2.252 2.410 2.392 2.563 52.84 51.62
0.160 120 2.4127 0.0074 0.0070 0.0077 2.412 2.552 2.2566 2.720 2.437 2.592 2.591 2.760 2.462 2.632 2.616 2.800 44.04 43.02
0.160 150 3.0159 0.0059 0.0056 0.0062 2.696 2.853 2.869 3.041 2.721 2.893 2.894 3.081 2.746 2.933 2.919 3.121 35.23 34.41
0.160 200 4.0212 0.0044 0.0042 0.0046 3.114 3.295 3.313 3.512 3.139 3.335 3.338 3.552 3.164 3.375 3.363 3.592 26.42 25.81
0.160 225 4.5239 0.0040 0.0038 0.0042 3.302 3.494 3.514 3.725 3.327 3.534 3.539 3.765 3.352 3.574 3.564 3.805 23.49 22.94
0.160 270 5.4287 0.0033 0.0032 0.0035 3.618 3.828 3.849 4.080 3.643 3.868 3.874 4.120 3.668 3.908 3.899 4.160 19.57 19.12
0.180 4 0.1018 0.1713 0.1643 0.1787 0.483 0.510 0.513 0.543 0.508 0.550 0.538 0.583 0.533 0.590 0.563 0.623 1044.95 1021.66
0.180 5 0.1272 0.1370 0.1315 0.1429 0.539 0.570 0.573 0.607 0.564 0.610 0.598 0.647 0.589 0.650 0.623 0.687 835.96 817.33
0.180 10 0.2545 0.0685 0.0657 0.0715 0.763 0.806 0.810 0.858 0.788 0.846 0.835 0.898 0.813 0.886 0.860 0.938 417.98 408.33
0.180 20 0.5089 0.0343 0.0329 0.0357 1.096 1.159 1.164 1.232 1.121 1.199 1.189 1.272 1.146 1.239 1.214 1.312 208.99 204.33
0.180 30 0.7634 0.0228 0.0219 0.0238 1.353 1.430 1.437 1.521 1.378 1.470 1.462 1.561 1.403 1.510 1.487 1.601 139.33 136.22
0.180 45 1.1451 0.0152 0.0146 0.0159 1.657 1.752 1.760 1.863 1.682 1.792 1.785 1.903 1.707 1.832 1.810 1.943 92.88 90.81
0.180 60 1.5268 0.0116 0.0112 0.0121 1.914 2.023 2.033 2.152 1.939 2.063 2.058 2.192 1.964 2.103 2.083 2.232 69.66 68.11
0.180 75 1.9085 0.0093 0.0089 0.0097 2.139 2.261 2.272 2.405 2.164 2.301 2.297 2.445 2.189 2.341 2.322 2.485 55.73 54.49
0.180 90 2.2902 0.0078 0.0074 0.0081 0.344 2.477 2.489 2.635 2.369 2.517 2.514 2.675 2.394 2.557 2.539 2.715 46.44 45.41
0.180 100 2.5447 0.0070 0.0067 0.0073 2.470 2.611 2.624 2.778 2.495 2.651 2.649 2.818 2.520 2.691 2.674 2.858 41.80 40.87
0.180 120 3.0536 0.0058 0.0056 0.0061 2.706 2.860 2.874 3.043 2.731 2.2900 2.899 3.083 2.756 2.940 2.2924 3.123 34.83 34.06
0.180 150 3.8170 0.0047 0.0045 0.0049 3.026 3.198 3.214 3.402 3.051 3.238 3.239 3.442 3.076 3.278 3.264 3.482 27.87 27.24
0.180 200 5.0894 0.0035 0.0034 0.0036 3.494 3.693 3.711 3.928 3.519 3.733 3.736 3.968 3.544 3.773 3.761 4.008 20.90 20.43
0.180 270 6.8707 0.0026 0.0025 0.0028 4.059 4.291 4.312 4.564 4.084 4.331 4.337 4.604 4.109 4.371 4.362 4.644 15.48 15.14
0.200 4 0.1257 0.1387 0.1335 0.1443 0.535 0.565 0.568 0.598 0.560 0.605 0.593 0.638 0.585 0.645 0.618 0.678 847.16 829.52
0.200 10 0.3142 0.0555 0.0534 0.0577 0.846 0.893 0.897 0.945 0.871 0.933 0.922 0.985 0.896 0.973 0.947 1.025 338.86 331.81
0.200 15 0.4712 0.0370 0.0356 0.0385 1.044 1.103 1.108 1.166 1.069 1.143 1.133 1.206 1.094 1.183 1.158 1.246 225.91 221.20
0.200 20 0.6283 0.0277 0.0267 0.0289 1.215 1.284 1.289 1.357 1.240 1.324 1.314 1.397 1.265 1.364 1.339 1.437 169.43 165.90
0.200 25 0.7854 0.222 0.0214 0.0231 1.370 1.446 1.453 1.530 1.395 1.486 1.478 1.570 1.420 1.526 1.503 1.610 135.54 132.72
0.200 30 0.9425 0.0185 0.0178 0.0192 1.500 1.584 1.591 1.676 1.525 1.624 1.616 1.716 1.550 1.664 1.641 1.756 112.95 110.60
0.200 45 1.4137 0.0123 0.0119 0.0128 1.838 1.941 1.949 2.052 1.863 1.981 1.974 2.092 1.888 2.021 1.999 2.132 75.30 73.73
0.200 60 1.8850 0.0094 0.0091 0.0098 2.122 2.241 2.251 2.370 2.147 2.281 2.276 2.410 2.172 2.321 2.301 2.450 56.48 55.30
0.200 75 2.3562 0.0075 0.0073 0.0078 2.372 2.505 2.516 2.649 2.397 2.545 2.541 2.689 2.422 2.585 2.566 2.729 45.18 44.24
0.200 90 2.8274 0.0063 0.0061 0.0065 2.599 2.744 2.756 2.902 2.624 2.784 2.781 2.942 2.649 2.824 2.806 2.982 37.65 36.87
0.200 100 3.1416 0.0057 0.0054 0.0059 2.739 2.893 2.906 3.059 2.764 2.933 2.931 3.099 2.789 2.973 2.956 3.139 33.89 33.18
0.200 120 3.7699 0.0047 0.0045 0.0049 3.001 3.169 3.183 3.351 3.026 3.209 3.208 3.391 3.051 3.249 3.233 3.431 28.24 27.65
0.200 150 4.7124 0.0038 0.0036 0.0039 3.355 3.543 3.559 3.747 3.380 3.583 3.584 3.787 3.405 3.623 3.609 3.827 22.59 22.12
0.200 200 6.2832 0.0028 0.0027 0.0029 3.874 4.091 4.109 4.326 3.899 4.131 4.134 4.366 3.924 4.171 4.159 4.406 16.94 16.59
0.250 2 0.0982 0.1776 0.1706 0.1850 0.472 0.497 0.499 0.525 0.497 0.537 0.524 0.565 0.522 0.577 0.549 0.605 1085.74 1064.23
0.250 4 0.1963 0.0888 0.0853 0.0925 0.668 0.703 0.705 0.743 0.693 0.743 0.730 0.783 0.718 0.783 0.755 0.823 542.87 532.12
0.250 10 0.4909 0.0355 0.0341 0.0370 1.055 1.111 1.115 1.174 1.080 1.151 1.140 1.214 1.105 1.191 1.165 1.254 217.15 212.85
0.250 15 0.7363 0.0237 0.0227 0.0247 1.303 1.371 1.376 1.449 1.328 1.411 1.401 1.489 1.353 1.451 1.426 1.529 144.76 141.90
0.250 20 0.9817 0.0178 0.0171 0.0185 1.516 1.596 1.602 1.687 1.541 1.636 1.627 1.727 1.566 1.676 1.652 1.767 108.57 106.42
0.250 30 1.4726 0.0118 0.0114 0.0123 1.872 1.970 1.977 2.082 1.897 2.010 2.002 2.122 1.922 2.050 2.027 2.162 72.38 70.95
0.250 45 2.2089 0.0079 0.0076 0.0082 2.293 2.413 2.421 2.550 2.318 2.453 2.446 2.590 2.343 2.493 2.471 2.630 48.25 47.30
0.250 60 2.9452 0.0060 0.0058 0.0063 2.647 2.786 2.796 2.945 2.672 2.826 2.821 2.985 2.697 2.866 2.846 3.025 36.19 35.47
0.250 75 3.6816 0.0048 0.0046 0.0050 2.960 3.115 3.126 3.292 2.985 3.155 3.151 3.332 3.010 3.195 3.176 3.372 28.95 28.38
0.250 90 4.4179 0.0040 0.0039 0.0042 3.242 3.412 3.424 3.607 3.267 3.452 3.449 3.647 3.292 3.492 3.474 3.687 24.13 23.65
0.300 2 0.1414 0.1233 0.1191 0.1278 0.564 0.590 0.592 0.622 0.589 0.630 0.617 0.662 0.614 0.670 0.642 0.702 755.81 742.20
0.300 10 0.7069 0.0247 0.0238 0.0256 1.261 1.320 1.324 1.391 1.286 1.360 1.349 1.431 1.311 1.400 1.374 1.471 151.16 148.44
0.300 15 1.0603 0.0164 0.0159 0.0170 1.1557 1.630 1.635 1.718 1.582 1.670 1.660 1.758 1.607 1.710 1.685 1.798 100.78 98.96
0.300 20 1.4137 0.0123 0.0119 0.0128 1.812 1.897 1.903 1.999 1.837 1.937 1.928 2.039 1.862 1.977 1.953 2.079 75.58 74.22
0.300 30 2.1206 0.0082 0.0079 0.0085 2.236 2.342 2.349 2.468 2.261 2.382 2.374 2.508 2.286 2.422 2.399 2.548 50.39 49.48
0.300 45 3.1809 0.0055 0.0053 0.0057 2.739 2.868 2.876 3.022 2.764 2.908 2.901 3.062 2.789 2.948 2.926 3.102 33.59 32.99
0.300 60 4.2412 0.0042 0.0040 0.0043 3.163 3.312 3.321 3.490 3.188 3.352 3.346 3.530 3.213 3.392 3.371 3.570 25.19 24.74
0.300 75 5.3014 0.0034 0.0032 0.0035 3.536 3.702 3.714 3.902 3.561 3.742 3.739 3.942 3.586 3.782 3.764 3.982 20.16 19.79
0.300 90 6.3617 0.0028 0.0027 0.0029 3.874 4.056 4.068 4.274 3.899 4.096 4.093 4.314 3.924 4.136 4.118 4.354 16.80 16.49
0.355 4 0.3959 0.0440 0.0427 0.0454 0.938 0.980 0.983 1.028 0.963 1.020 1.008 1.068 0.988 1.060 1.033 1.108 270.56 266.11
0.355 6 0.5939 0.0294 0.0285 0.0303 1.148 1.200 1.203 1.258 1.173 1.240 1.228 1.298 1.198 1.280 1.253 1.338 180.38 177.40
0.355 10 0.9898 0.0176 0.0171 0.0182 1.482 1.550 1.553 1.625 1.507 1.590 1.578 1.665 1.532 1.630 1.603 1.705 108.23 106.44
0.355 15 1.4847 0.0117 0.0114 0.0121 1.830 1.913 1.918 2.006 1.855 1.953 1.943 2.046 1.880 1.993 1.968 2.086 72.15 70.96
0.355 20 1.9796 0.0088 0.0085 0.0091 2.130 2.226 2.232 2.334 2.155 2.266 2.257 2.374 2.180 2.306 2.282 2.414 54.11 53.22
0.355 30 2.9694 0.0059 0.0057 0.0061 2.629 2.748 2.755 2.881 2.654 2.788 2.780 2.921 2.679 2.828 2.805 2.961 36.08 35.48
0.355 45 4.4541 0.0039 0.0038 0.0040 3.220 3.366 3.374 3.529 3.245 3.406 3.399 3.569 3.270 3.446 3.424 3.609 24.05 23.65
0.355 60 5.9388 0.0030 0.0029 0.0031 3.718 3.887 3.897 4.075 3.743 3.927 3.922 4.115 3.768 3.967 3.947 4.155 18.04 17.74
0.400 4 0.5027 0.0347 0.0336 0.0359 1.053 1.098 1.100 1.148 1.078 1.138 1.125 1.188 1.103 1.178 1.150 1.228 213.47 210.19
0.400 6 0.7540 0.0231 0.0224 0.0239 1.289 1.344 1.347 1.405 1.314 1.384 1.372 1.445 1.339 1.424 1.397 1.485 142.31 140.12
0.400 10 1.2566 0.0139 0.0134 0.0144 1.664 1.735 1.739 1.814 1.689 1.775 1.764 1.854 1.714 1.815 1.789 1.894 85.39 84.07
0.400 15 1.8850 0.0092 0.0089 0.0096 2.054 2.142 2.147 2.240 2.079 2.182 2.172 2.280 2.104 2.222 2.197 2.230 56.92 56.05
0.400 20 2.5133 0.0069 0.0067 0.0072 2.391 2.493 2.499 2.607 2.416 2.533 2.524 2.647 2.441 2.573 2.549 2.687 42.69 42.04
0.400 30 3.7699 0.0046 0.0045 0.0048 2.952 3.078 3.085 3.218 2.977 3.118 3.110 3.258 3.002 3.158 3.135 3.298 28.46 28.02
0.400 35 4.3982 0.0040 0.0038 0.0041 3.188 3.324 3.332 3.476 3.213 3.364 3.357 3.516 3.238 3.404 3.382 3.556 24.40 24.02
0.500 4 0.7854 0.0222 0.0216 0.0228 1.310 1.360 1.363 1.415 1.335 1.400 1.388 1.455 1.360 1.440 1.413 1.495 136.92 135.07
0.500 6 1.1781 0.0148 0.0144 0.0152 1.604 1.666 1.669 1.733 1.629 1.706 1.694 1.773 1.654 1.746 1.719 1.813 91.28 90.05
0.500 10 1.9635 0.0089 0.0086 0.0091 2.071 2.150 2.154 2.237 2.096 2.190 2.179 2.277 2.121 2.230 2.204 2.317 54.77 54.03
0.500 15 2.9452 0.0059 0.0058 0.0061 2.557 2.655 2.660 2.762 2.582 2.695 2.685 2.802 2.607 2.735 2.710 2.842 36.51 36.00
0.500 20 3.9270 0.0044 0.0043 0.0046 2.976 3.090 3.095 3.215 3.001 3.130 3.120 3.255 3.026 3.170 3.145 3.295 27.38 27.01
0.500 30 5.8905 0.0030 0.0029 0.0030 3.674 3.814 3.821 3.968 3.699 3.854 3.846 4.008 3.724 3.894 3.871 4.048 18.26 18.01
0.500 35 6.8722 0.0025 0.0025 0.0026 3.968 4.119 4.127 4.286 3.993 4.159 4.152 4.326 4.018 4.199 4.177 4.366 15.65 15.44

Other dimensions and constructions on request.  All data are based on EN 60317-11.


EW Types

Enamelled Wire Types

General

There is a big variety of enamelled wire types available. The different insulations are described in different standards, such as IEC 60317 (Asia or Europe), NEMA MW 1000 (USA) and JIS C 3202 (Japan) which sometimes still use different test methods.

For NEMA MW 1000C values are given in inch and metric.

Under the respective standard (customized to the region where appropriate), the typical technical values are given for the different insulation, such as Polyurethane, Polyester, Polyesterimide, Polyimide.

Europe

Enamelled Copper Wire acc. to IEC - Europe

IEC 60317 specifies different enamelled wire types. Test methods referred to are IEC 60851.


Thermal Stability acc. to IEC 60172

The line chart below is for technical comparison only and cannot be used to forecast lifetime of wound products (see also IEC 60172)



Thermal Stability in Hours [h] vs. Temperature in Degrees Celsius [°C]
Average breakdown voltage at 20°C
Calculation of average value Ds
Ds=t*Vµ(volt), with
Ds : breakdown voltage
t : increase with insulation, t = da - dnom, with
da : outer diameter
dnom : bare wire diameter
Vµ : Volt per micron insulation
Example
Test with cylindrical electrode
dnom = 0.071mm (41 AWG)
da = 0.083mm
t = da - dnom = 0.083 - 0.071 = 0.012mm = 12 µm
Vµ = 220 V/µm, therefore
Ds = 12µ * 220 V/µ = 2,640 V

Calculation of Breakdown Voltage (Test acc. to IEC 60851-5 4.)

Solderability of different Wire Types

Tinning time [sec] for wire 0.25mm Grade 1 vs. Tin bath temp. [°C]
Product Code
P155
P180
G180
E180
A200
AI210
I220
ML240
Product-Name Polysol© 155 Polysol© 180 Estersol© 180 Amidester© 200 Amidester© 210
General Description mod. Polyurethane mod. Polyurethane mod. Polyurethane Polyesterimide Theic-mod. Polyesterimide A200 + Polyamidimide Polyamidimide aromatic Polyimide
IEC (including the following standards) IEC 60317-20,
IEC 60317-4
IEC 60317-51,
IEC 60317-20
IEC 60317-51,
IEC 60317-20
IEC 60317-23,
IEC 60317-3,
IEC 60317-8
IEC 60317-84,
IEC 60317-8
IEC 60317-13 IEC 60317-57,
IEC 60317-26
IEC 60317-46,
IEC 60317-7
NEMA (including the following standards) MW 79, MW 2, MW 75 MW 82, MW 79, MW 75 MW 82, MW 79, MW 75 MW 77, MW 5, MW 30 MW 74, MW 5, MW 30 MW 35, MW 73 MW 81 MW 16
UL-approval yes yes yes yes yes yes yes yes
Diameters available 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm
Properties Very good solderability and high thermal properties. Good solderability at 370°C and elevated thermal values. Lubricant free, very low outgassing, good solderability at 370°C and elevated thermal values. Solderable at high temperatures, high thermal properties and good chemical resistance. Very high thermal properties and good chemical resistance. Very high thermal properties and high mechanical resistance. High thermal properties, good chemical resistance. Excellent thermal properties, excellent chemical and high radiation resistance.
Applications Small transformers, relays, solenoids, small motors, watch coils, transformers, instruments. Automotive coils as relays and ignition coils, transformers and solenoids. Closed relays and SMD components. Small motors, small transformers, automotive coils. Motors, small motors, transformers. Motors, transformers. Small motors, automotive sensors and solenoids, transformers. Extreme loads and space applications.
Thermal values
Temperature index 20.000 h acc. to IEC 60172  158°C  192°C  192°C  195°C  210°C  212°C  230°C  245°C
Thermal stability chart [view]
Cut through temperature
0.05mm: acc. to IEC 60851-6 4 200°C 230°C 230°C 265°C 320°C 320°C 350°C 450°C
Elektrisola typical value  225°C  260°C  260°C  315°C  350°C  365°C  390°C  450°C
0.25mm: acc. to IEC 60851-6 4 200°C 230°C 230°C 265°C 320°C 320°C 350°C 450°C
Elektrisola typical value  230°C  265°C  265°C  325°C  360°C  380°C  410°C  500°C
Heat Shock
0.05mm: acc. to IEC 60851-6 3 175°C 200°C 200°C 200°C 220°C 220°C 240°C 260°C
Elektrisola typical value  190°C  210°C  210°C  260°C  230°C  250°C  250°C  330°C
0.25mm: acc. to IEC 60851-6 3 175°C 200°C 200°C 200°C 220°C 220°C 240°C 260°C
Elektrisola typical value  180°C  200°C  200°C  250°C  220°C  240°C  240°C  320°C
Electrical values
Low voltage continuity for Grade 1 wires
0.05mm: acc. to IEC 60851-5 1 40 40 40 40 40 40 40 40
Elektrisola typical value  0  0  0  0  0  0  0  0
High voltage continuity for Grade 1 wires
0.05mm: Elektrisola typical value  2  2  2  2  2  2  2  2
0.25mm: acc. to IEC 60851-5 2 10 10 10 10 10 10 10 10
0.25mm: Elektrisola typical value  1  1  1  1  1  1  1  1
Breakdown voltage acc. to IEC 60851-5 4 (at 20 °C, 35% humidity)
0.05mm: Elektrisola typical value 220 V/µm 220 V/µm 220 V/µm 220 V/µm 220 V/µm 210 V/µm 210 V/µm 210 V/µm
0.25mm: Elektrisola typical value 180 V/µm 180 V/µm 180 V/µm 180 V/µm 180 V/µm 170 V/µm 170 V/µm 170 V/µm
Calculation method of break voltage [view]
Decrease of breakdown voltage at elevated temperature for Grade 1 wires
0.05mm: Elektrisola typical value 25% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 200°C 20% / 220°C 20% / 220°C 15% / 240°C
0.25mm: Elektrisola typical value 25% / 155°C 20% / 180°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 200°C 20% / 220°C 15% / 240°C
Mechanical values
Elongation for Grade 1 wire
0.05mm: acc. to IEC 60851-3 Part 3 1 14% 14% 14% 14% 14% 14% 14% 14%
0.05mm: Elektrisola typical value  23%  23%  23%  23%  23%  23%  23%  23%
0.25mm: acc. to IEC 60851-3 Part 3 1 25% 25% 25% 25% 25% 25% 25% 25%
0.25mm: Elektrisola typical value  40%  40%  40%  40%  40%  40%  40%  40%
Tensile strength for Grade 1 wires
0.05mm: Elektrisola typical value 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN
0.25mm: Elektrisola typical value 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN
Stress strain chart [view]
Chemical compatibility
Compatibility to standard solution
Pencil Hardness acc. to IEC 60851-4 3 without treatment ≥ H ≥ H ≥ H ≥ H ≥ H ≥ H ≥ H ≥ H
Pencil Hardness acc. to IEC 60851-4 3 with treatment ≥ H ≥ H ≥ H ≥ H ≥ 2B ≥ H ≥ H ≥ HB
Decrease of breakdown voltage in % after treatment 5% 0% 0% 0% 5% 0% 5% 0%
RoHS laboratory analysis view view view view view view view
Solderablity
Solderability for Grade 1 wires
0.05mm: max. acc. to IEC 60851-4 5 2.0s / 390°C 3.0s / 390°C 3.0s / 390°C 3.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.3s / 370°C 1.8s / 370°C 1.8s / 370°C 1.8s / 470°C
Elektrisola typical value 0.2s / 390°C 0.7s / 390°C 0.7s / 390°C
0.25mm: max. acc. to IEC 60851-4 5 3.0s / 390°C 3.0s / 390°C 3.0s / 390°C 3.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.7s / 370°C 2.8s / 370°C 2.8s / 370°C 2.8s / 470°C
Elektrisola typical value 0.5s / 390°C 1.1s / 390°C 1.1s / 390°C
Solderability of different wire types chart [view]

Asia

Enamelled Copper Wires acc. to IEC-Asia

IEC 60317 specifies different enamelled wire types. Test methods referred to are IEC 60851, which are also partially adopted by JIS.


Thermal Stability acc. to IEC 60172

The line chart below is for technical comparison only and cannot be used to forecast lifetime of wound products (see also IEC 60172)



Thermal Stability in Hours [h] vs. Temperature in Degrees Celsius [°C]
Average breakdown voltage at 20°C
Calculation of average value Ds
Ds=t*Vµ(volt), with
Ds : breakdown voltage
t : increase with insulation, t = da - dnom, with
da : outer diameter
dnom : bare wire diameter
Vµ : Volt per micron insulation
Example
Test with cylindrical electrode
dnom = 0.071mm (41 AWG)
da = 0.083mm
t = da - dnom = 0.083 - 0.071 = 0.012mm = 12 µm
Vµ = 220 V/µm, therefore
Ds = 12µ * 220 V/µ = 2,640 V

Calculation of Breakdown Voltage (Test acc. to IEC 60851.5.4.2, cylinder) The Breakdown voltage depends mainly on the thickness of the insulation (see formula), but also on the bare wire diameter, the application temperature of the coil and the type of enamel.

Solderability of different Wire Types

Tinning time [sec] for wire 0.25mm Grade 1 vs. Tin bath temp. [°C]
Product Code
P155
PN155
P155p
P180
E180
A200
AI210
I220
ML240
Product-Name Polysol© 155 Polysol-N© 155 Polysol© 155p Polysol© 180 Estersol© 180 Amidester© 200 Amidester© 210
General Description mod. Polyurethane mod. Polyurethane/ Polyamide overcoat mod. Polyurethane mod. Polyurethane Polyesterimide Theic-mod. Polyesterimide A200 + Polyamidimide Polyamidimide aromatic Polyimide
IEC (including the following norms) IEC 60317-20, IEC 60317-4 IEC 60317-21, IEC 60317-19 IEC 60317-20, IEC 60317-4 IEC 60317-51, IEC 60317-20 IEC 60317-23, IEC 60317-3, IEC 60317-8 IEC 60317-84,
IEC 60317-8
IEC 60317-13 IEC 60317-57, IEC 60317-26 IEC 60317-46, IEC 60317-7
NEMA (including the following norms) MW 79, MW 2, MW 75 MW 80, MW 28 MW 79, MW 2, MW 75 MW 82, MW 79, MW 75 MW 77, MW 5, MW 30 MW 74, MW 5, MW 30 MW 35, MW 73 MW 81 MW 16
UL-approval yes yes yes yes yes yes yes yes yes
Diameters available 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.015 - 0.50 mm 0.020 - 0.50 mm 0.015 - 0.50 mm, ex USA
Properties Very good solderability and high thermal properties. Very good solderability with high thermal properties. Very good solderability and high thermal properties, no elongation pinholes. Good solderability at 370°C and elevated thermal values. Solderable at high temperatures, high thermal properties and good chemical resistance. Very high thermal properties and good chemical resistance. Very high thermal properties and high mechanical resistance. High thermal properties, good chemical resistance. Excellent thermal properties, excellent chemical and high radiation resistance.
Applications Small transformers, relays, solenoids, small motors, watch coils, transformers, instruments. Appliance motors, encapsulated coils, solenoids, transformers, toroids. Small transformers, timers, relays, small motors, solenoids, clock coils, watch coils, magnetic heads. Automotive coils as relays and ignition coils, transformers and solenoids. Small motors, small transformers, automotive coils. Motors, small motors, transformers. Motors, transformers. Small motors, automotive sensors and solenoids, transformers. Extreme loads and space applications.
Thermal values
Temperature index 20.000 h acc. to IEC 60172  158°C  158°C  164°C  192°C  195°C  210°C  212°C  230°C  245°C
Thermal stability chart [view]
Cut through temperature
0.05mm: acc. to IEC 60851-6 4 200°C 200°C 200°C 230°C 265°C 320°C 320°C 350°C 450°C
Elektrisola typical value  225°C  225°C  225°C  260°C  315°C  350°C  365°C  390°C  450°C
0.25mm: acc. to IEC 60851-6 4 200°C 200°C 200°C 230°C 265°C 320°C 350°C 450°C
Elektrisola typical value  230°C  230°C  230°C  265°C  325°C  360°C  380°C  410°C  450°C
Heat Shock
0.05mm: acc. to IEC 60851-6 3 175°C 175°C 175°C 200°C 200°C 220°C 220°C 240°C 260°C
Elektrisola typical value  190°C  190°C  190°C  210°C  260°C  230°C  250°C  250°C  300°C
0.25mm: acc. to IEC 60851-6 3 175°C 175°C 175°C 200°C 200°C 220°C 220°C 240°C 260°C
Elektrisola typical value  180°C  180°C  180°C  200°C  250°C  220°C  240°C  240°C  300°C
Electrical values
Low voltage continuity for Grade 1 wires
0.05mm: acc. to IEC 60851-5 1 40 40 40 40 40 40 40 40 40
Elektrisola typical value  0  0  0  0  0  0  0  0  0
High voltage continuity for Grade 1 wires
0.05mm: Elektrisola typical value  2  2  2  2  2  2  2  2  2
0.25mm: acc. to IEC 60851-5 2 10 10 10 10 10 10 10 10 10
Elektrisola typical value  1  1  1  1  1  1  1  1  1
Pinholes acc. to JIS C3003.6c
with 0% elongation good good very good very good very good very good very good very good very good
with 3% elongation not good not good very good very good very good good very good very good very good
Breakdown voltage acc. to IEC 60851-5 4 (at 20 ?, 35% humidity)
0.05mm: Elektrisola typical value 220 V/µm 210 V/µm 220 V/µm 220 V/µm 220 V/µm 220 V/µm 210 V/µm 210 V/µm 210 V/µm
0.25mm: Elektrisola typical value 180 V/µm 150 V/µm 180 V/µm 180 V/µm 180 V/µm 180 V/µm 170 V/µm 170 V/µm 170 V/µm
Decrease of breakdown voltage for Grade 1 wires
0.05mm: Elektrisola typical value 25% / 155°C 30% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 205°C 20% / 205°C 15% / 220°C
0.25mm: Elektrisola typical value 25% / 155°C 30% / 155°C 25% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 205°C 20% / 205°C 15% / 220°C
Calculation method of break voltage [view]
Mechanical values
Elongation for Grade 1 wire
0.05mm: acc. to IEC 60851-3 Part 3 1 14% 14% 14% 14% 14% 14% 14% 14% 14%
Elektrisola typical value  23%  23%  23%  23%  23%  23%  23%  23%  23%
0.25mm: acc. to IEC 60851-3 Part 3 1 25% 25% 25% 25% 25% 25% 25% 25% 25%
Elektrisola typical value  40%  40%  40%  40%  40%  40%  40%  40%  40%
Tensile strength for Grade 1 wires
0.05mm: Elektrisola typical value 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN
0.25mm: Elektrisola typical value 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN
Stress strain chart [view]
Chemical compatibility
Compatibility to standard solution
Pencil Hardness acc. to IEC 60851-4 3 with treatment 4H 4H 4H 4H 4H 4H 4H 4H 6H
Pencil Hardness acc. to IEC 60851-4 3 without treatment 4H 4H 4H 4H 4H 4H 4H 4H 6H
Decrease of breakdown voltage in % after treatment 5% 5% 5% 0% 0% 5% 0% 5% 0%
RoHS laboratory analysis view view view view view view view
Solderability
Solderability for Grade 1 wires
0.05mm: max. acc. to IEC 60851-4 5 2.0s / 390°C 2.0s / 390°C 2.0s / 390°C 3.0s / 390°C 3.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.3s / 370°C 0.3s / 370°C 0.3s / 370°C 1.8s / 370°C 1.8s / 470°C
Elektrisola typical value 0.2s / 390°C 0.2s / 390°C 0.2s / 390°C 0.7s / 390°C
0.25mm: max. acc. to IEC 60851-4 5 2.0s / 390°C 2.0s / 390°C 2.0s / 390°C 3.0s / 390°C 3.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.7s / 370°C 0.7s / 370°C 0.7s / 370°C 2.8s / 370°C 2.8s / 470°C
Elektrisola typical value 0.5s / 390°C 0.5s / 390°C 0.5s / 390°C 1.1s / 390°C
Solderability of different wire types chart [view]

America (inch)

Copper Magnet Wire acc. to NEMA MW 1000C (inch)


Thermal Stability acc. to IEC 60172

The line chart below is for technical comparison only and cannot be used to forecast lifetime of wound products (see also ASTM D2307)


Thermal Stability in Hours [h] vs. Temperature in Degrees Celsius [°C] or Fahrenheit [°F]
Average breakdown voltage at 20°C
Calculation of average value Ds
Ds=t*Vµ(volt), with
Ds : breakdown voltage
t : increase with insulation, t = da - dnom, with
da : outer diameter
dnom : bare wire diameter
Vµ : Volt per micron insulation
Example
Test with cylindrical electrode
dnom = 0.071mm (41 AWG)
da = 0.083mm
t = da - dnom = 0.083 - 0.071 = 0.012mm = 12 µm
Vµ = 220 V/µm, therefore
Ds = 12µ * 220 V/µ = 2,640 V

Calculation of Breakdown Voltage (Test acc. to IEC 60851.5.4.2, cylinder)

Solderability of different Wire Types
Product Code
P155
PN155
P180
E180
A200
AI210
I220
ML240
Product-Name Polysol© 155 Polysol-N© 155 Polysol© 180 Estersol© 180 Amidester© 200 Amidester© 210
General Description mod. Polyurethane mod. Polyurethane/ Polyamide overcoat mod. Polyurethane Polyesterimide Theic-mod. Polyesterimide A200 + Polyamidimide Polyamidimide aromatic Polyimide
NEMA (including the following norms) MW 79, MW 2, MW 75 MW 80, MW 28 MW 82, MW 79, MW 75 MW 77, MW 5, MW 30 MW 74, MW 5, MW 30 MW 35, MW 73 MW 81 MW 16
IEC (including the following norms) IEC 60317-20, IEC 60317-4 IEC 60317-21, IEC 60317-19 IEC 60317-51, IEC 60317-20 IEC 60317-23, IEC 60317-3/8 IEC 60317-84,
IEC 60317-8
IEC 60317-13 IEC 60317-57, IEC 60317-26 IEC 60317-46, IEC 60317-7
UL-approval yes yes yes yes yes yes yes yes
Diameters available 56 - 24 AWG 56 - 24 AWG 56 - 24 AWG 56 - 24 AWG 56 - 24 AWG 56 - 24 AWG 52 - 24 AWG 56 - 24 AWG
Properties Very good solderability and high thermal properties. Very good solderability with high thermal properties. Good solderability at 370°C and elevated thermal values. Solderable at high temperatures, high thermal properties and good chemical resistance. Very high thermal properties and good chemical resistance. Very high thermal properties and high mechanical resistance. High thermal properties, good chemical resistance. Excellent thermal properties, excellent chemical and high radiation resistance.
Applications Small transformers, relays, solenoids, small motors, watch coils, transformers, instruments. Appliance motors, encapsulated coils, solenoids, transformers, toroids. Automotive coils as relays and ignition coils, transformers and solenoids. Small motors, small transformers, automotive coils. Motors, small motors, transformers. Motors, transformers. Small motors, automotive sensors and solenoids, transformers. Extreme loads and space applications.
Thermal values
Temperature index 20,000 h acc. to ASTM D 2307  158°C  170°C  192°C  195°C  210°C  212°C  230°C  245°C
Thermal stability chart [view]
Cut through temperature
44 AWG: acc. to NEMA MW1000, 3.50 200°C 200°C 225°C 225°C 300°C 320°C 350°C 450°C
Elektrisola typical value  225°C  225°C  260°C  315°C  350°C  365°C  390°C  480°C
30 AWG: acc. to NEMA MW1000, 3.50 200°C 200°C 225°C 225°C 300°C 320°C 350°C 450°C
Elektrisola typical value  230°C  230°C  265°C  325°C  360°C  380°C  410°C  480°C
Heat Shock
44 AWG: acc. to NEMA MW1000, 3.5 175°C 175°C 200°C 200°C 220°C 220°C 240°C 280°C
Elektrisola typical value  190°C  190°C  210°C  260°C  230°C  230°C  250°C  300°C
30 AWG: acc. to NEMA MW1000, 3.5 175°C 175°C 200°C 200°C 220°C 220°C 240°C 280°C
Elektrisola typical value  180°C  180°C  200°C  250°C  220°C  220°C  240°C  300°C
Electrical values
Low voltage continuity acc. to NEMA MW 1000, 3.9.3
44 AWG single: acc. to NEMA MW 1000, 3.9.3 25 25 25 25 25 25 25 25
Elektrisola typical value  0  0  0  0  0  0  0  0
High voltage continuity acc. to NEMA MW 1000, 3.9.2
44 AWG single: acc. to NEMA MW 1000, 3.9.2 15 15 15 15 15 15 15 15
Elektrisola typical value  2  2  2  2  2  2  2  2
30 AWG single: acc. to NEMA MW 1000, 3.9.2 15 15 15 15 15 15 15 15
Elektrisola typical value  1  1  1  1  1  1  1  1
Breakdown voltage (at 20° C, 35% humidity) acc. to NEMA MW1000, 3.8.7
44 AWG single: Elektrisola typical value 9000 V/mil 8700 V/mil 9000 V/mil 9000 V/mil 9000 V/mil 8700 V/mil 8700 V/mil 8700 V/mil
30 AWG single: Elektrisola typical value 6000 V/mil 5800 V/mil 6000 V/mil 6000 V/mil 6000 V/mil 5800 V/mil 5800 V/mil
Decrease of breakdown voltage in % at elevated temperature, Elektrisola typical value for 44/30AWG, Single build
44 AWG single: Elektrisola typical value 25% / 155°C 30% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 205°C 20% / 205°C 15% / 220°C
30 AWG single: Elektrisola typical value 25% / 155°C 30% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 205°C 20% / 205°C 15% / 220°C
Calculation method of break voltage [view]
Mechanical values
Elongation min. acc. to NEMA MW 1000, 3.4 for 44/30 AWG
44 AWG: acc. to NEMA MW 1000, 3.4 14% 14% 14% 14% 14% 14% 14% 14%
Elektrisola typical value  23%  23%  23%  23%  23%  23%  23%  23%
30 AWG: acc. to NEMA MW 1000, 3.4 25% 25% 25% 25% 25% 25% 25% 25%
Elektrisola typical value  40%  40%  40%  40%  40%  40%  40%  40%
Tensile strength for Grade 1 wires
44 AWG: Elektrisola typical value 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN
30 AWG: Elektrisola typical value 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN
Stress strain chart [view]
Chemical compatibility
Solubility per NEMA MW 1000, 3.51.1.1.3 Pass Pass Pass Pass Pass Pass Pass Pass
Compatibility to standard solution
Decrease of breakdown voltage in % after treatment 5% 5% 5% 5% 5% 0% 0% 5%
RoHS laboratory analysis view view view view view view
Solderability
Solderability acc. to. NEMA MW 1000 3.13.1.1 max. seconds at °C for 44/30 AWG
44 AWG: acc. to NEMA MW 1000 3.13 2.5s / 390°C 2.5s / 390°C 2.5s / 390°C 4.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.3s / 370°C 0.3s / 370°C 1.5s / 370°C 1.8s / 470°C
Elektrisola typical value 0.2s / 390°C 0.2s / 390°C 0.7s / 390°C
30 AWG: acc. to NEMA MW 1000 3.13 3.5s / 390°C 3.5s / 390°C 3.5s / 390°C 5.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.7s / 370°C 0.7s / 370°C 2.8s / 370°C 2.8s / 470°C
Elektrisola typical value 0.5s / 390°C 0.5s / 390°C 1.1s / 390°C
Solderability of different wire types chart [view]

America (metric)

Copper Magnet Wire acc. to NEMA MW 1000C (metric)


Thermal Stability acc. to IEC 60172

The line chart below is for technical comparison only and cannot be used to forecast lifetime of wound products (see also ASTM D2307)


Thermal Stability in Hours [h] vs. Temperature in Degrees Celsius [°C] or Fahrenheit [°F]
Average breakdown voltage at 20°C
Calculation of average value Ds
Ds=t*Vµ(volt), with
Ds : breakdown voltage
t : increase with insulation, t = da - dnom, with
da : outer diameter
dnom : bare wire diameter
Vµ : Volt per micron insulation
Example
Test with cylindrical electrode
dnom = 0.071mm (41 AWG)
da = 0.083mm
t = da - dnom = 0.083 - 0.071 = 0.012mm = 12 µm
Vµ = 220 V/µm, therefore
Ds = 12µ * 220 V/µ = 2,640 V

Calculation of Breakdown Voltage (Test acc. to IEC 60851.5.4.2, cylinder)

Solderability of different Wire Types
Product Code
P155
PN155
P180
E180
A200
AI210
I220
ML240
Product-Name Polysol© 155 Polysol-N© 155 Polysol© 180 Estersol© 180 Amidester© 200 Amidester© 210
General Description mod. Polyurethane mod. Polyurethane/ Polyamide overcoat mod. Polyurethane Polyesterimide Theic-mod. Polyesterimide A200 + Polyamidimide Polyamidimide aromatic Polyimide
NEMA (including the following norms) MW 79, MW 2, MW 75 MW 80, MW 28 MW 82, MW 79, MW 75 MW 77, MW 5, MW 30 MW 74, MW 5, MW 30 MW 35, MW 73 MW 81 MW 16
IEC (including the following norms) IEC 60317-20, IEC 60317-4 IEC 60317-21, IEC 60317-19 IEC 60317-51, IEC 60317-20 IEC 60317-23, IEC 60317-3/8 IEC 60317-84,
IEC 60317-8
IEC 60317-13 IEC 60317-57, IEC 60317-26 IEC 60317-46, IEC 60317-7
UL-approval yes yes yes yes yes yes yes yes
Diameters available 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.010 - 0.50 mm 0.015 - 0.50 mm 0.020 - 0.50 mm 0.015 - 0.50 mm, ex USA
Properties Very good solderability and high thermal properties. Very good solderability with high thermal properties. Good solderability at 370°C and elevated thermal values. Solderable at high temperatures, high thermal properties and good chemical resistance. Very high thermal properties and good chemical resistance. Very high thermal properties and high mechanical resistance. High thermal properties, good chemical resistance. Excellent thermal properties, excellent chemical and high radiation resistance.
Applications Small transformers, relays, solenoids, small motors, watch coils, transformers, instruments. Appliance motors, encapsulated coils, solenoids, transformers, toroids. Automotive coils as relays and ignition coils, transformers and solenoids. Small motors, small transformers, automotive coils. Motors, small motors, transformers. Motors, transformers. Small motors, automotive sensors and solenoids, transformers. Extreme loads and space applications.
Thermal values
Temperature index 20,000 h acc. to ASTM D 2307  158°C  158°C  192°C  195°C  210°C  212°C  230°C  245°C
Thermal stability chart [view]
Cut through temperature
44 AWG: acc. to NEMA MW1000, 3.50 200°C 200°C 225°C 225°C 300°C 320°C 350°C 450°C
Elektrisola typical value  225°C  225°C  260°C  315°C  350°C  365°C  390°C  480°C
30 AWG: acc. to NEMA MW1000, 3.50 200°C 200°C 225°C 225°C 300°C 320°C 350°C 450°C
Elektrisola typical value  230°C  230°C  265°C  325°C  360°C  380°C  410°C  480°C
Heat Shock
44 AWG: acc. to NEMA MW1000, 3.5 175°C 175°C 200°C 200°C 220°C 220°C 240°C 280°C
Elektrisola typical value  190°C  190°C  210°C  260°C  230°C  230°C  250°C  300°C
30 AWG: acc. to NEMA MW1000, 3.5 175°C 175°C 200°C 200°C 220°C 220°C 240°C 250°C
Elektrisola typical value  180°C  180°C  200°C  250°C  220°C  220°C  240°C  300°C
Electrical values
Low voltage continuity acc. to NEMA MW 1000, 3.9.3
44 AWG single: acc. to NEMA MW 1000, 3.9.3 15 15 15 15 15 15 15 15
Elektrisola typical value  0  0  0  0  0  0  0  0
High voltage continuity acc. to NEMA MW 1000, 3.9.2
44 AWG single: acc. to NEMA MW 1000, 3.9.2 15 15 15 15 15 15 15 15
Elektrisola typical value  2  2  2  2  2  2  2  2
30 AWG single: acc. to NEMA MW1000, 3.9.2 15 15 15 15 15 15 15 15
Elektrisola typical value  1  1  1  1  1  1  1  1
Breakdown voltage (at 20° C, 35% humidity) acc. to NEMA MW1000, 3.8.7
44 AWG single: Elektrisola typical value 9000 V/mil 8700 V/mil 9000 V/mil 9000 V/mil 9000 V/mil 8700 V/mil 8700 V/mil 8700 V/mil
30 AWG single: Elektrisola typical value 6000 V/mil 5800 V/mil 6000 V/mil 6000 V/mil 6000 V/mil 5800 V/mil 5800 V/mil
Decrease of breakdown voltage in % at elevated temperature, Elektrisola typical value for 44/30AWG, Single build
44 AWG single: Elektrisola typical value 25% / 155°C 30% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 205°C 20% / 205°C 15% / 220°C
30 AWG single: Elektrisola typical value 25% / 155°C 30% / 155°C 20% / 180°C 20% / 180°C 20% / 200°C 20% / 205°C 20% / 205°C 15% / 220°C
Calculation method of break voltage [view]
Mechanical values
Elongation min. acc. to NEMA MW 1000, 3.4 for 44/30 AWG
44 AWG: acc. to NEMA MW 1000, 3.4 14% 14% 14% 14% 14% 14% 14% 14%
Elektrisola typical value  23%  23%  23%  23%  23%  23%  23%  23%
30 AWG: acc. to NEMA MW 1000, 3.4 25% 25% 25% 25% 25% 25% 25% 25%
Elektrisola typical value  40%  40%  40%  40%  40%  40%  40%  40%
Tensile strength for Grade 1 wires
44 AWG: Elektrisola typical value 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN
30 AWG: Elektrisola typical value 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN
Stress strain chart [view]
Chemical compatibility
Solubility per NEMA MW 1000, 3.51.1.1.3 Pass Pass Pass Pass Pass Pass Pass Pass
Compatibility to standard solution
Decrease of breakdown voltage in % after treatment 5% 5% 0% 0% 5% 0% 5% 0%
RoHS laboratory analysis view view view view view view
Solderability
Solderability acc. to. NEMA MW 1000 3.13.1.1 max. seconds at °C for 44/30 AWG
44 AWG: acc. to NEMA MW 1000 3.13 4.0s / 390°C 4.0s / 390°C 4.0s / 390°C 4.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.3s / 370°C 0.3s / 370°C 1.5s / 370°C 1.8s / 470°C
Elektrisola typical value 0.2s / 390°C 0.2s / 390°C 0.7s / 390°C
30 AWG: acc. to NEMA MW 1000 3.13 5.0s / 390°C 5.0s / 390°C 5.0s / 390°C 5.0s / 470°C not solderable not solderable not solderable not solderable
Elektrisola typical value 0.7s / 370°C 0.7s / 370°C 2.8s / 370°C 2.8s / 470°C
Elektrisola typical value 0.5s / 390°C 0.5s / 390°C 1.1s / 390°C
Solderability of different wire types chart [view]

SB Technical Data

Self Bonding Technical Data

Europe / Asia IEC 60317

Technical Data for Selfbonding Copper Wire by Size acc. to IEC 60317

Minimum coat thickness and maximum overall diameter
Conductor
(Bare Wire)
Grade 1B Grade 2B Elongation
acc to IEC
Resistance at 20 °C Breakdown Voltage
acc to IEC **
1 kg of enamelled wire length approx. Filling Factor
number of enamelled wires/cm²
Tension
Nominal Diameter Tolerance Section min inc.
base coat
min inc.
bond coat
max o.d. min inc.
base coat
min inc.
bond coat
max o.d. min nom min max Grade 1B Grade 2B Grade 1B Grade 2B Grade 1B Grade 2B max
[mm] [mm] [mm²] [mm] [mm] [mm] [mm] [mm] [mm] [%] [Ohm/m] [Ohm/m] [Ohm/m] min. [V] min. [V] [km] [km] [n] [n] [cN]
0.010 * 0.000078540 0.0013 0.0008 0.0133 3 217.65 195.88 239.41 70 125 1306 715995 1.4
0.012 * 0.000113097 0.0013 0.0008 0.0160 3 151.14 136.03 166.26 80 150 912.3 509852 2.0
0.014 * 0.000153938 0.0016 0.0010 0.0190 4 111.04 99.94 122.15 90 175 666.3 364483 2.5
0.016 * 0.000201062 0.0016 0.001 0.022 0.004 0.001 0.025 5 85.02 76.52 93.52 100 200 510.6 477.3 280237 212719 3.2
0.018 * 0.000254469 0.0018 0.001 0.024 0.004 0.001 0.027 5 67.18 60.46 73.89 110 225 406.8 384.2 230156 180417 3.9
0.019 * 0.000283529 0.0019 0.001 0.025 0.004 0.001 0.028 6 60.29 54.26 66.32 115 240 366.4 347.5 210006 166957 4.3
0.020 * 0.000314159 0.002 0.002 0.026 0.004 0.002 0.029 6 54.41 48.97 59.85 120 250 328.9 314.7 184773 152705 4.7
0.021 * 0.000346361 0.002 0.002 0.029 0.004 0.002 0.031 6 49.35 44.42 54.29 125 265 294.7 284.8 158413 137316 5.1
0.022 * 0.000380133 0.002 0.002 0.030 0.005 0.002 0.033 6 44.97 40.47 49.47 130 275 269.7 256.9 147300 120169 5.5
0.023 * 0.000415476 0.002 0.002 0.031 0.005 0.002 0.034 7 41.14 37.03 45.26 145 290 247.8 236.6 137316 112776 6.0
0.024 * 0.000452389 0.002 0.002 0.032 0.005 0.002 0.035 7 37.79 34.01 41.56 145 290 228.4 218.5 128314 106045 6.5
0.025 * 0.000490874 0.003 0.002 0.034 0.005 0.002 0.037 7 34.82 31.34 38.31 150 300 208.3 201.0 112776 97024 7.0
0.027 * 0.000572555 0.003 0.002 0.037 0.005 0.002 0.040 7 29.86 26.87 32.84 165 315 178.7 173.0 97024 84356 8.0
0.028 * 0.000615752 0.003 0.003 0.038 0.006 0.003 0.042 7 27.76 24.99 30.54 170 325 165.7 158.5 89107 74016 8.5
0.030 * 0.000706858 0.003 0.003 0.042 0.006 0.003 0.044 8 24.18 21.76 26.60 180 350 143.7 139.4 75926 67053 9.6
0.032 * 0.000804248 0.003 0.003 0.044 0.007 0.003 0.048 8 21.25 19.13 23.38 190 375 127.1 121.5 68699 57029 10.8
0.034 * 0.00090792 0.003 0.003 0.047 0.007 0.003 0.052 8 18.83 17.133 20.522 210 400 112.7 107.4 61029 50123 12.0
0.036 * 0.00101788 0.004 0.003 0.050 0.008 0.003 0.055 8 16.79 15.282 18.305 225 425 100.1 95.70 53409 44399 13.2
0.038 * 0.001134 0.004 0.003 0.052 0.008 0.003 0.057 10 15.07 13.716 16.429 240 450 90.29 86.56 49095 41112 14.5
0.040 * 0.001257 0.004 0.003 0.055 0.008 0.003 0.060 10 13.60 12.379 14.827 250 475 81.50 78.30 44399 37491 15.9
0.043 * 0.001452 0.004 0.003 0.059 0.009 0.003 0.065 12 11.77 10.712 12.831 265 520 70.73 67.59 38880 32079 18.0
0.045 * 0.001590 0.005 0.003 0.062 0.009 0.003 0.068 12 10.75 9.781 11.715 275 550 64.36 61.86 34929 29564 19.4
0.048 * 0.001810 0.005 0.003 0.067 0.010 0.003 0.073 14 9.447 8.596 10.297 290 580 56.48 54.21 30533 25726 21.7
0.050 * 0.001963 0.005 0.003 0.068 0.010 0.003 0.074 14 8.706 7.922 9.489 300 600 52.45 50.45 29096 24611 23.2
0.053 * 0.002206 0.005 0.003 0.072 0.010 0.003 0.078 15 7.748 7.051 8.446 315 625 46.76 45.08 26114 22277 25.6
0.056 * 0.002463 0.006 0.003 0.075 0.011 0.003 0.082 15 6.940 6.316 7.565 325 650 41.95 40.40 23568 19994 28.2
0.060 * 0.002827 0.006 0.003 0.081 0.011 0.003 0.088 16 6.046 5.502 6.590 355 680 36.55 35.29 20530 17601 31.7
0.063 * 0.003117 0.006 0.005 0.085 0.012 0.005 0.092 16 5.484 4.990 5.977 375 700 33.01 31.83 18272 15614 34.4
0.067 * 0.003526 0.007 0.005 0.090 0.012 0.005 0.098 17 4.848 4.412 5.285 400 700 29.19 28.21 16173 13946 38
0.070 * 0.003848 0.007 0.005 0.093 0.012 0.005 0.100 17 4.442 4.042 4.842 425 700 26.85 26.06 15083 13210 41
0.071 ± 0.003 0.003959 0.007 0.005 0.094 0.012 0.005 0.101 17 4.318 3.929 4.706 425 700 26.13 25.37 14745 12932 42
0.075 ± 0.003 0.004418 0.007 0.005 0.100 0.013 0.005 0.106 17 3.869 3.547 4.235 425 765 23.41 22.77 13210 11665 46
0.080 ± 0.003 0.005027 0.007 0.005 0.105 0.014 0.005 0.112 17 3.401 3.133 3.703 425 850 20.69 20.07 11903 10376 52
0.085 ± 0.003 0.005675 0.008 0.005 0.112 0.015 0.005 0.119 18 3.012 2.787 3.265 465 875 18.30 17.78 10475 9206 57
0.090 ± 0.003 0.006362 0.008 0.005 0.117 0.015 0.005 0.125 18 2.687 2.495 2.900 500 900 16.40 15.93 9544 8365 63
0.095 ± 0.003 0.007088 0.008 0.005 0.123 0.016 0.005 0.131 19 2.412 2.247 2.594 500 925 14.75 14.33 8657 7572 69
0.100 ± 0.003 0.007854 0.008 0.005 0.129 0.016 0.005 0.137 19 2.176 2.034 2.333 500 950 13.34 12.97 7888 6940 75
0.106 ± 0.003 0.008825 0.008 0.005 0.136 0.017 0.005 0.145 20 1.937 1.816 2.069 1200 2650 11.90 11.56 7104 6198 83
0.110 ± 0.003 0.009503 0.009 0.008 0.141 0.017 0.008 0.150 20 1.799 1.690 1.917 1300 2700 10.99 10.70 6431 5687 88
0.112 ± 0.003 0.009852 0.009 0.008 0.143 0.017 0.008 0.152 20 1.735 1.632 1.848 1300 2700 10.62 10.34 6244 5531 91
0.118 ± 0.003 0.010936 0.010 0.009 0.150 0.019 0.009 0.159 20 1.563 1.474 1.660 1400 2750 9.558 9.310 5608 4966 99
0.120 ± 0.003 0.011310 0.010 0.009 0.153 0.019 0.009 0.163 20 1.511 1.426 1.604 1500 2800 9.240 8.992 5418 4776 102
0.125 ± 0.003 0.012272 0.010 0.009 0.158 0.019 0.009 0.168 20 1.393 1.317 1.475 1500 2800 8.541 8.321 5065 4483 110
0.130 ± 0.003 0.013273 0.011 0.010 0.165 0.021 0.010 0.175 21 1.288 1.220 1.361 1550 2900 7.877 7.671 4626 4092 118
0.132 ± 0.003 0.013685 0.011 0.010 0.167 0.021 0.010 0.177 21 1.249 1.184 1.319 1550 2900 7.648 7.452 4511 3996 121
0.140 ± 0.003 0.015394 0.011 0.010 0.175 0.021 0.010 0.186 21 1.110 1.055 1.170 1600 3000 6.827 6.654 4092 3624 133
0.150 ± 0.003 0.017671 0.012 0.010 0.186 0.023 0.010 0.197 22 0.9673 0.9219 1.0159 1650 3100 5.961 5.814 3604 3199 150
0.160 ± 0.003 0.020106 0.012 0.010 0.197 0.023 0.010 0.209 22 0.8502 0.8122 0.8906 1700 3200 5.254 5.128 3216 2858 168
0.170 ± 0.003 0.022698 0.013 0.010 0.210 0.025 0.010 0.221 23 0.7531 0.7211 0.7871 1700 3250 4.653 4.548 2844 2545 186
0.180 ± 0.003 0.025447 0.013 0.010 0.220 0.025 0.010 0.233 23 0.6718 0.6444 0.7007 1700 3300 4.165 4.068 2582 2302 206
0.190 ± 0.003 0.028353 0.014 0.011 0.233 0.027 0.011 0.245 24 0.6029 0.5794 0.6278 1750 3400 3.733 3.651 2302 2065 226
0.200 ± 0.003 0.031416 0.014 0.011 0.243 0.027 0.011 0.256 24 0.5441 0.5237 0.5657 1800 3500 3.379 3.306 2109 1893 247
0.212 ± 0.003 0.035299 0.015 0.012 0.258 0.029 0.012 0.272 24 0.4843 0.4669 0.5026 1850 3600 3.005 2.939 1870 1676 274
0.224 ± 0.003 0.039408 0.015 0.012 0.270 0.029 0.012 0.284 24 0.4338 0.4188 0.4495 1900 3700 2.700 2.644 1702 1533 302
0.236 ± 0.004 0.043744 0.017 0.013 0.286 0.032 0.013 0.302 25 0.3908 0.3747 0.4079 2000 3800 2.427 2.374 1516 1359 331
0.250 ± 0.004 0.049087 0.017 0.013 0.300 0.032 0.013 0.316 25 0.3482 0.3345 0.3628 2100 3900 2.170 2.125 1373 1237 366
0.265 ± 0.004 0.055155 0.018 0.013 0.316 0.033 0.013 0.333 26 0.3099 0.2982 0.3223 2150 3950 1.934 1.896 1233 1114 406
0.280 ± 0.004 0.061575 0.018 0.013 0.331 0.033 0.013 0.348 26 0.2776 0.2676 0.2882 2200 4000 1.737 1.705 1121 1017 448
0.300 ± 0.004 0.070686 0.019 0.014 0.354 0.035 0.014 0.372 26 0.2418 0.2335 0.2506 2200 4050 1.514 1.486 979 889 507
0.315 ± 0.004 0.077931 0.019 0.014 0.369 0.035 0.014 0.387 26 0.2193 0.2121 0.2270 2200 4100 1.376 1.352 899 819 553
0.335 ± 0.004 0.088141 0.020 0.015 0.393 0.038 0.015 0.412 27 0.1939 0.1878 0.2004 2250 4200 1.217 1.195 793 722 618
0.355 ± 0.004 0.098980 0.020 0.015 0.413 0.038 0.015 0.432 27 0.1727 0.1674 0.1782 2300 4300 1.086 1.068 716 655 687
0.375 ± 0.005 0.110447 0.021 0.016 0.436 0.040 0.016 0.456 27 0.1548 0.1494 0.1604 2300 4350 0.974 0.957 642 587 759
0.400 ± 0.005 0.125664 0.021 0.016 0.461 0.040 0.016 0.481 27 0.1360 0.1316 0.1407 2300 4400 0.858 0.844 573 526 854
0.425 ± 0.005 0.141863 0.022 0.016 0.489 0.042 0.016 0.511 28 0.1205 0.1167 0.1244 2300 4400 0.761 0.749 510 468 954
0.450 ± 0.005 0.159043 0.022 0.016 0.514 0.042 0.016 0.536 28 0.1075 0.1042 0.1109 2300 4400 0.680 0.670 460 424 1060
0.475 ± 0.005 0.177205 0.024 0.017 0.543 0.045 0.017 0.565 28 0.09646 0.09366 0.09938 2350 4500 0.610 0.601 412 380 1170
0.500 ± 0.005 0.196350 0.024 0.017 0.568 0.045 0.017 0.590 28 0.08706 0.08462 0.08959 2400 4600 0.551 0.544 376 348 1287

* Resistance tolerance is binding.

* * Diameters ≤ 0,100 mm measured using cylinder method, diameters > 0,100 mm measured using twist method.

Goto Download

Printversion of the Technical Data for Selfbonding Wire, based on IEC 60317.

Asia JIS C3202

Technical Data for Selfbonding Copper Wire by Size acc. to JIS C3202

Minimum coat thickness and maximum overall diameter
Conductor
(Bare Wire)
Class 0 Class 1 Class 2 Elongation
acc to JIS
Resistance at 20 °C Breakdown Voltage
acc to JIS **
1 kg of enamelled wire length approx. Filling Factor
number of enamelled wires/cm²
max. winding tension
Nominal Diameter Tolerance
(Class2)
Section min thickness
base coat
min total
thickness
max OD min thickness
base coat
min total
thickness
max OD min thickness
base coat
min total
thickness
max OD min nom max
(Class2)
Class0 Class1 Class2 Class0 Class1 Class2 Class0 Class1 Class2
[mm] [mm] [mm²] (radius)
[mm]
(radius)
[mm]
[mm] (radius)
[mm]
(radius)
[mm]
[mm] (radius)
[mm]
(radius)
[mm]
[mm] [%] [Ohm/km] [Ohm/km] min. [V] min. [V] min. [V] [km] [km] [km] [n] [n] [n] [cN]
0.012 ± 0.001 0.000113097 0.001 0.002 0.019 157162 205740 821.7 337422 2.0
0.014 ± 0.001 0.000153938 0.001 0.002 0.021 115466 145073 621.5 274796 2.5
0.016 ± 0.001 0.000201062 0.001 0.002 0.023 88404 107768 486.2 228114 3.2
0.018 ± 0.001 0.000254469 0.001 0.002 0.025 69850 83203 390.5 192391 3.9
0.019 ± 0.001 0.000283529 0.001 0.002 0.027 62691 73959 349.5 170833 4.3
0.020 ± 0.002 0.000314159 0.001 0.002 0.030 56578 69850 311.9 147300 4.7
0.021 ± 0.002 0.000346361 0.001 0.002 0.032 51318 62691 282.4 132701 5.1
0.022 ± 0.002 0.000380133 0.001 0.002 0.033 46759 56578 259.0 124142 5.5
0.023 ± 0.002 0.000415476 0.001 0.002 0.035 42781 51318 236.6 112776 6.0
0.024 ± 0.002 0.000452389 0.002 0.003 0.036 39291 46759 212.0 94272 6.5
0.025 ± 0.002 0.000490874 0.002 0.003 0.037 5 36210 42780 60 196.7 89107 7.0
0.027 ± 0.002 0.000572555 0.002 0.003 0.040 5 31044 36210 60 169.5 77910 8.0
0.028 ± 0.002 0.000615752 0.002 0.003 0.042 5 28867 33478 60 157.5 72177 8.5
0.030 ± 0.002 0.000706858 0.002 0.003 0.044 5 25146 28870 70 138.6 65466 9.6
0.032 ± 0.002 0.000804248 0.002 0.003 0.047 5 22101 25146 70 122.2 58317 10.8
0.034 ± 0.002 0.000907920 0.002 0.003 0.049 5 19577 22101 70 109.2 53409 12.0
0.036 ± 0.002 0.00101788 0.002 0.003 0.052 5 17462 19577 70 97.62 48098 13.2
0.038 ± 0.002 0.00113412 0.002 0.003 0.054 5 15673 17462 70 88.21 44399 14.5
0.040 ± 0.002 0.00125664 0.002 0.003 0.056 7 14145 15670 100 80.10 41112 15.9
0.043 ± 0.003 0.00145220 0.003 0.004 0.061 7 12240 14145 100 68.15 33175 18.0
0.045 ± 0.003 0.00159043 0.003 0.004 0.064 7 11167 12830 100 62.35 30533 19.4
0.048 ± 0.003 0.00180956 0.003 0.004 0.067 7 9823 11167 100 55.25 27759 21.7
0.050 ± 0.003 0.00196350 0.004 0.005 0.083 0.003 0.004 0.069 10 9053 10240 950 700 47.90 51.17 20259 26114 23.2
0.053 ± 0.003 0.00220618 0.004 0.005 0.087 0.003 0.004 0.073 10 8057 9053 950 700 42.94 45.69 18504 23568 25.6
0.056 ± 0.003 0.00246301 0.004 0.005 0.091 0.003 0.004 0.076 10 7217 8057 950 700 38.72 41.18 16967 21671 28.2
0.060 ± 0.003 0.00282743 0.004 0.006 0.096 0.003 0.004 0.081 10 6286 6966 950 700 33.81 36.02 14913 19227 31.7
0.063 ± 0.003 0.00311725 0.004 0.006 0.098 0.003 0.004 0.084 10 5644 6222 950 700 31.01 32.83 14100 17821 34.4
0.067 ± 0.003 0.00352565 0.004 0.006 0.102 0.003 0.004 0.088 10 4990 5469 950 700 27.68 29.19 12932 16173 38.0
0.070 ± 0.003 0.00384845 0.004 0.006 0.106 0.003 0.004 0.091 10 4572 4990 950 700 25.46 26.85 12024 15083 41.0
0.071 ± 0.003 0.00395919 0.005 0.007 0.108 0.003 0.005 0.093 10 4444 4844 950 700 24.48 25.94 11209 14257 42.0
0.075 ± 0.003 0.00441787 0.005 0.007 0.113 0.003 0.005 0.097 10 3982 4321 950 700 22.07 23.36 10278 13070 46.0
0.080 ± 0.003 0.00502655 0.005 0.007 0.118 0.003 0.005 0.103 10 3500 3778 1100 700 19.58 20.60 9373 11665 52.0
0.085 ± 0.003 0.00567450 0.005 0.007 0.123 0.003 0.005 0.108 10 3100 3331 1100 700 17.49 18.34 8582 10575 57.0
0.090 ± 0.003 0.00636173 0.005 0.008 0.128 0.003 0.005 0.113 10 2765 2959 1100 700 15.65 16.43 7759 9631 63.0
0.095 ± 0.003 0.00708822 0.005 0.008 0.134 0.003 0.005 0.119 10 2482 2647 1100 700 14.11 14.77 7104 8732 69.0
0.100 ± 0.003 0.00785398 0.009 0.016 0.156 0.005 0.009 0.140 0.003 0.005 0.125 15 2240 2381 2000 1100 700 11.88 12.75 13.36 4933 6431 7953 75.0
0.106 ± 0.003 0.00882473 0.009 0.016 0.162 0.005 0.009 0.146 0.003 0.005 0.131 15 1994 2111 2000 1100 700 10.70 11.42 11.94 4568 5892 7217 83.0
0.110 ± 0.003 0.00950332 0.009 0.016 0.166 0.005 0.009 0.150 0.003 0.005 0.135 15 1851 1957 2000 1100 700 10.00 10.65 11.11 4347 5569 6781 88.0
0.112 ± 0.003 0.00985204 0.009 0.016 0.172 0.005 0.009 0.154 0.003 0.005 0.138 15 1786 1885 2000 1100 700 9.615 10.26 10.71 4141 5344 6529 91.0
0.120 ± 0.003 0.0113097 0.010 0.017 0.180 0.006 0.010 0.162 0.004 0.006 0.147 15 1556 1636 2200 1300 850 8.426 8.952 9.305 3686 4685 5608 102
0.125 ± 0.003 0.0122718 0.010 0.017 0.185 0.006 0.010 0.167 0.004 0.006 0.152 15 1434 1505 2200 1300 850 7.821 8.286 8.598 3486 4400 5237 110
0.130 ± 0.003 0.0132732 0.010 0.017 0.190 0.006 0.010 0.172 0.004 0.006 0.157 15 1325 1389 2200 1300 850 7.278 7.692 7.969 3302 4141 4901 118
0.140 ± 0.003 0.0153938 0.010 0.017 0.200 0.006 0.010 0.182 0.004 0.006 0.167 15 1143 1193 2200 1300 850 6.348 6.679 6.901 2976 3686 4320 133
0.150 ± 0.003 0.0176715 0.010 0.017 0.210 0.006 0.010 0.192 0.004 0.006 0.177 15 996.0 1037 2200 1300 850 5.585 5.854 6.033 2695 3302 3836 150
0.160 ± 0.003 0.0201062 0.011 0.018 0.222 0.007 0.011 0.204 0.005 0.007 0.189 15 875.0 908.8 2200 1300 850 4.917 5.139 5.287 2386 2887 3320 168
0.170 ± 0.003 0.0226980 0.011 0.018 0.232 0.007 0.011 0.214 0.005 0.007 0.199 15 775.1 803.2 2200 1300 850 4.391 4.575 4.698 2183 2619 2991 186
0.180 ± 0.003 0.0254469 0.012 0.019 0.246 0.008 0.012 0.226 0.005 0.008 0.211 15 691.4 715.0 2400 1600 1000 3.913 4.076 4.187 1940 2322 2656 206
0.19 ± 0.003 0.0283529 0.012 0.019 0.256 0.008 0.012 0.236 0.005 0.008 0.221 15 620.5 640.6 2400 1600 1000 3.535 3.674 3.769 1790 2127 2419 226
0.200 ± 0.003 0.0314159 0.012 0.019 0.266 0.008 0.012 0.246 0.005 0.008 0.231 15 560.0 577.2 2400 1600 1000 3.210 3.328 3.409 1657 1956 2212 247
0.210 ± 0.003 0.0346361 0.012 0.019 0.276 0.008 0.012 0.256 0.005 0.008 0.241 15 507.9 522.8 2400 1600 1000 2.927 3.029 3.099 1538 1804 2030 269
0.220 ± 0.004 0.0380133 0.012 0.019 0.286 0.008 0.012 0.266 0.005 0.008 0.252 15 462.8 480.1 2400 1600 1000 2.680 2.769 2.828 1432 1670 1863 291
0.230 ± 0.004 0.0415476 0.013 0.020 0.298 0.009 0.013 0.278 0.006 0.009 0.264 15 423.4 438.6 2400 1600 1000 2.452 2.530 2.581 1309 1516 1682 315
0.240 ± 0.004 0.0452389 0.013 0.020 0.308 0.009 0.013 0.288 0.006 0.009 0.274 15 388.9 402.2 2400 1600 1000 2.261 2.330 2.375 1225 1412 1561 340
0.250 ± 0.004 0.0490874 0.013 0.020 0.318 0.009 0.013 0.298 0.006 0.009 0.284 15 358.4 370.2 2400 1600 1000 2.092 2.152 2.192 1149 1318 1452 366
0.260 ± 0.004 0.0530929 0.013 0.020 0.330 0.009 0.013 0.310 0.006 0.009 0.294 15 331.4 341.8 2400 1600 1000 1.938 1.992 2.030 1073 1225 1354 392
0.270 ± 0.004 0.0572555 0.013 0.020 0.340 0.009 0.013 0.320 0.006 0.009 0.304 15 307.3 316.6 2400 1600 1000 1.803 1.851 1.885 1011 1149 1266 419
0.280 ± 0.004 0.0615752 0.013 0.020 0.350 0.009 0.013 0.330 0.006 0.009 0.314 15 285.7 294.1 2400 1600 1000 1.682 1.725 1.755 954 1080 1186 448
0.290 ± 0.004 0.0660520 0.013 0.020 0.360 0.009 0.013 0.340 0.006 0.009 0.324 20 266.4 273.9 2400 1600 1000 1.573 1.611 1.639 901 1017 1114 476
0.300 ± 0.005 0.0706858 0.014 0.021 0.374 0.010 0.014 0.352 0.007 0.010 0.337 20 245.6 254.0 2800 2000 1400 1.467 1.503 1.527 835 943 1026 507
0.320 ± 0.005 0.0804248 0.014 0.021 0.394 0.010 0.014 0.372 0.007 0.010 0.357 20 215.9 222.8 2800 2000 1400 1.296 1.326 1.345 752 844 914 568
0.350 ± 0.005 0.0962113 0.014 0.021 0.424 0.010 0.014 0.402 0.007 0.010 0.387 20 180.5 185.7 2800 2000 1400 1.090 1.113 1.128 648 722 777 668
0.370 ± 0.005 0.107521 0.014 0.022 0.446 0.010 0.014 0.424 0.007 0.010 0.407 20 161.5 165.9 2800 2000 1400 0.977 0.998 1.011 586 652 702 740
0.400 ± 0.005 0.125664 0.015 0.023 0.480 0.011 0.015 0.456 0.007 0.011 0.439 20 138.2 141.7 2800 2000 1400 0.838 0.854 0.866 505 560 603 854
0.425 ± 0.005 0.141863 0.015 0.023 0.507 0.011 0.016 0.483 0.007 0.011 0.465 20 122.4 125.0 2800 2000 1400 0.744 0.758 0.768 455 499 539 954
0.450 ± 0.006 0.159043 0.016 0.024 0.532 0.011 0.016 0.508 0.007 0.011 0.490 20 109.2 112.1 2800 2000 1400 0.665 0.677 0.686 410 451 485 1060
0.475 ± 0.006 0.177205 0.016 0.024 0.560 0.012 0.017 0.535 0.007 0.011 0.517 20 97.30 99.17 2800 2000 1400 0.599 0.608 0.616 372 405 437 1170
0.500 ± 0.006 0.196350 0.017 0.025 0.586 0.012 0.017 0.560 0.008 0.012 0.542 20 87.81 89.95 3050 2150 1450 0.541 0.550 0.556 337 370 395 1287

Goto Download

Printversion of the Technical Data for Selfbonding Wire, based on IEC 60317 and JIS C3202.

America MW 1000C (inch)

Technical Data for Selfbonding Copper Wire by Size acc. MW 1000C (inch)

Conductor (Bare Copper) Type 1 Type 2 Resistance at 20°C** Dielectric Strength* 1 pound of wire
approx. length
Filling Factor max. winding Tension
Diameters Section
Area
Min. Inc.
Film
Min. Inc.
Selfbonding
Max Overall Min. Inc.
Film
Min. Inc.
Selfbonding
Max Overall Elongation Min Min. Nom. Max. Type 1 Type 2 Type 1 Type 2 Type 1 Type 2
[AWG] min.
[in]
nom.
[in]
max.
[in]
[in2 x 10-6] [in] [in] [in] [in] [in] [in] [%] [ohm/1000'] [ohm/1000'] [ohm/1000'] [V] [V] [feet] [feet] [wires/in2] [wires/in2] [grams]
24.0 0.0199 0.0201 0.0202 317.3 0.0010 0.0005 0.0227 0.0019 0.0005 0.0238 28 24.91 25.55 26.19 2710 4870 790.5 776.3 2,241 2,039 1,438
25.0 0.0177 0.0179 0.0180 251.6 0.0009 0.0005 0.0203 0.0018 0.0005 0.0214 28 31.37 32.24 33.10 2640 4740 995.2 975.0 2,802 2,522 1,143
26.0 0.0157 0.0159 0.0160 198.6 0.0009 0.0005 0.0182 0.0017 0.0005 0.0193 27 39.71 40.89 42.07 2570 4620 1,257 1,228 3,486 3,100 903
27.0 0.0141 0.0142 0.0143 158.4 0.0008 0.0005 0.0164 0.0016 0.0005 0.0173 27 49.71 50.94 52.17 2500 4500 1,571 1,537 4,294 3,859 717
28.0 0.0125 0.0126 0.0127 124.7 0.0008 0.0005 0.0147 0.0016 0.0005 0.0156 26 63.02 64.70 66.37 2440 4380 1,987 1,939 5,344 4,745 567
29.0 0.0112 0.0113 0.0114 100.3 0.0007 0.0004 0.0133 0.0015 0.0004 0.0142 26 78.22 80.45 82.68 2380 4270 2,462 2,396 6,529 5,727 454
30.0 0.0099 0.0100 0.0101 78.540 0.0007 0.0004 0.0119 0.0014 0.0004 0.0128 25 99.65 102.70 105.80 2380 4220 3,130 3,034 8,155 7,049 358
31.0 0.0088 0.0089 0.0090 62.211 0.0006 0.0004 0.0108 0.0013 0.0004 0.0115 24 125.5 129.7 133.9 2040 3900 3,920 3,814 9,901 8,732 282
32.0 0.0079 0.0080 0.0081 50.265 0.0006 0.0004 0.0098 0.0012 0.0004 0.0102 24 154.9 160.6 166.2 2040 3570 4,833 4,749 12,024 11,100 228
33.0 0.0070 0.0071 0.0072 39.592 0.0005 0.0004 0.0088 0.0011 0.0004 0.0095 23 196.1 203.9 211.7 1700 3250 6,105 5,896 14,913 12,796 180
34.0 0.0062 0.0063 0.0064 31.172 0.0005 0.0003 0.0078 0.0010 0.0003 0.0084 22 248.2 259.0 269.8 1700 2920 7,758 7,501 18,981 16,367 142
35.0 0.0055 0.0056 0.0057 24.630 0.0004 0.0003 0.0070 0.0009 0.0003 0.0076 21 312.9 327.9 342.8 1360 2920 9,778 9,413 23,568 19,994 112
36.0 0.0049 0.0050 0.0051 19.635 0.0004 0.0003 0.0063 0.0008 0.0003 0.0069 20 390.8 411.4 431.9 1360 2600 12,223 11,709 29,096 24,256 89
37.0 0.0044 0.0045 0.0046 15.904 0.0003 0.0003 0.0057 0.0008 0.0003 0.0062 20 480.4 508.0 535.7 1360 2270 15,055 14,468 35,544 30,042 72
38.0 0.0039 0.0040 0.0041 12.566 0.0003 0.0002 0.0051 0.0007 0.0002 0.0058 19 604.7 643.3 681.9 18,998 17,828 44,399 34,329 57
39.0 0.0034 0.0035 0.0036 9.6211 0.0002 0.0002 0.0045 0.0006 0.0002 0.0050 18 784.3 840.7 897.1 24,720 23,472 57,029 46,193 44
40.0 0.0030 0.0031 0.0032 7.5477 0.0002 0.0002 0.0040 0.0006 0.0002 0.0044 17 992.7 1,073 1,152 31,460 30,023 72,177 59,650 34
41.0 0.0027 0.0028 0.0029 6.1575 0.0002 0.0002 0.0036 0.0005 0.0002 0.0040 17 1,209 1,316 1,423 38,625 36,675 89,107 72,177 28
42.0 0.0024 0.0025 0.0026 4.9087 0.0002 0.0002 0.0032 0.0004 0.0002 0.0037 16 1,504 1,652 1,801 48,549 45,126 112,776 84,356 22
43.0 0.0021 0.0022 0.0023 3.8013 0.0002 0.0001 0.0029 0.0004 0.0001 0.0033 15 1,922 2,137 2,352 61,850 57,833 137,316 106,045 17
44.0 0.0019 0.0020 0.0021 3.1416 0.0001 0.0001 0.0027 0.0004 0.0001 0.0030 14 2,305 2,589 2,873 73,987 69,977 158,413 128,314 14
45.0 0.00176 2.4328 0.0001 0.0001 0.0023 0.0003 0.0001 0.0026 11 3.080 Ω/f 3.348 Ω/f 3.616 Ω/f 97,033 92,124 218,304 177,598 11
46.0 0.00157 1.9359 0.0001 0.0001 0.0021 0.0003 0.0001 0.0024 10 3.870 Ω/f 4.207 Ω/f 4.544 Ω/f 120,604 113,696 261,866 209,113 8.8
47.0 0.00140 1.5394 0.0001 0.0001 0.0019 0.0003 0.0001 0.0021 8 4.868 Ω/f 5.291 Ω/f 5.714 Ω/f 150,603 142,811 319,897 261,866 7.0
48.0 0.00124 1.2076 0.0001 0.0001 0.0017 0.0002 0.0001 0.0019 7 6.205 Ω/f 6.745 Ω/f 7.285 Ω/f 191,013 182,602 399,595 337,422 5.5
49.0 0.00111 0.96769 0.0001 0.0001 0.0015 0.0002 0.0001 0.0017 6 7.744 Ω/f 8.417 Ω/f 9.090 Ω/f 240,080 224,461 513,257 399,595 4.4
50.0 0.00099 0.76977 0.0001 0.0001 0.0014 0.0002 0.0001 0.0016 5 9.734 Ω/f 10.58 Ω/f 11.43 Ω/f 294,948 273,064 589,198 451,105 3.5
51.0 0.00088 0.60821 0.0001 0.0001 0.0013 12.32 Ω/f 13.39 Ω/f 14.46 Ω/f 364,581 683,330 2.8
52.0 0.00078 0.47784 0.0001 0.0001 0.0012 15.69 Ω/f 17.05 Ω/f 18.41 Ω/f 464,566 873,216 2.2

* Voltage minimums based upon testing according to twisted pair method.

* * For diameters larger than AWG 45, the unit of measure is ohms/1000 foot.; for diameters equal to AWG 45 and finer, the unit of measure is ohms/foot.

Goto Download

Printversion of the Technical Data for Selfbonding Wire, based on NEMA MW1000C.

America MW 1000C (metric)

Technical Data for Selfbonding Copper Wire by Size acc. MW 1000C (metric)

Conductor (Bare Copper) Type 1 Type 2 Resistance Dielectric Strength* 1 kg of enamelled
wire length approx.
Filling Factor max. winding Tension
Diameters Section
Area
Min. Inc.
Base coat
Min. Inc.
Selfbonding Overcoat
Max Diameter Min. Inc.
Base coat
Min. Inc.
Selfbonding Overcoat
Max Diameter Elongation Min. Min. Nom. Max. Type 1 Type 2 Type 1 Type 2 Type 1 Type 2
[AWG] min.
[mm]
nom.
[mm]
max.
[mm]
[mm2] [mm] [mm] [mm] [mm] [mm] [mm] [%] [ohm/m] [ohm/m] [ohm/m] [V] [V] [km] [km] [wires/cm2] [wires/cm2] [grams]
24.0 0.50500 0.51100 0.51300 0.205084 0.0254 0.0127 0.5766 0.0483 0.0127 0.6045 28 0.0818 0.0838 0.0859 2710 4870 0.525 0.515 347 316 1,438
25.0 0.45000 0.45500 0.45700 0.162597 0.0229 0.0127 0.5156 0.0457 0.0127 0.5436 28 0.1030 0.1058 0.1086 2640 4740 0.661 0.648 434 391 1,143
26.0 0.39900 0.40400 0.40600 0.128190 0.0229 0.0127 0.4623 0.0432 0.0127 0.4902 27 0.1303 0.1342 0.1380 2570 4620 0.835 0.816 540 481 903
27.0 0.35800 0.36100 0.36300 0.102354 0.0203 0.0127 0.4166 0.0406 0.0127 0.4394 27 0.1631 0.1671 0.1711 2500 4500 1.043 1.021 666 598 717
28.0 0.31800 0.32000 0.32300 0.080425 0.0203 0.0127 0.3734 0.0406 0.0127 0.3962 26 0.2068 0.2123 0.2178 2440 4380 1.321 1.290 828 736 567
29.0 0.28400 0.28700 0.29000 0.064692 0.0178 0.0102 0.3378 0.0381 0.0102 0.3607 26 0.2567 0.2640 0.2712 2380 4270 1.637 1.593 1,012 888 454
30.0 0.25100 0.25400 0.25700 0.050671 0.0178 0.0102 0.3023 0.0356 0.0102 0.3251 25 0.3270 0.3371 0.3472 2380 4220 2.081 2.018 1,264 1,093 358
31.0 0.22400 0.22600 0.22900 0.040115 0.0152 0.0102 0.2743 0.0330 0.0102 0.2921 24 0.4118 0.4256 0.4394 2040 3900 2.608 2.538 1,535 1,353 282
32.0 0.20100 0.20300 0.20600 0.032365 0.0152 0.0102 0.2489 0.0305 0.0102 0.2591 24 0.5084 0.5268 0.5452 2040 3570 3.219 3.164 1,864 1,720 228
33.0 0.17800 0.18000 0.18300 0.025447 0.0127 0.0102 0.2235 0.0279 0.0102 0.2413 23 0.6435 0.6689 0.6944 1700 3250 4.072 3.934 2,311 1,983 180
34.0 0.15700 0.16000 0.16300 0.020106 0.0127 0.0076 0.1981 0.0254 0.0076 0.2134 22 0.8144 0.8498 0.8852 1700 2920 5.160 4.991 2,942 2,537 142
35.0 0.14000 0.14200 0.14500 0.015837 0.0102 0.0076 0.1778 0.0229 0.0076 0.1930 21 1.0270 1.0760 1.1250 1360 2920 6.520 6.278 3,653 3,099 112
36.0 0.12400 0.12700 0.13000 0.012668 0.0102 0.0076 0.1600 0.0203 0.0076 0.1753 20 1.2830 1.3500 1.4170 1360 2600 8.129 7.791 4,510 3,760 89
37.0 0.11200 0.11400 0.11700 0.010207 0.0076 0.0076 0.1448 0.0203 0.0076 0.1575 20 1.5760 1.6670 1.7580 1360 2270 10.05 9.660 5,509 4,657 72
38.0 0.09900 0.10200 0.10400 0.008171 0.0076 0.0051 0.1295 0.0178 0.0051 0.1473 19 1.9840 2.1110 2.2370     12.56 11.80 6,882 5,321 57
39.0 0.08600 0.08900 0.09100 0.006221 0.0051 0.0051 0.1143 0.0152 0.0051 0.1270 18 2.5740 2.7590 2.9430     16.41 15.59 8,839 7,160 44
40.0 0.07600 0.07900 0.08100 0.004902 0.0051 0.0051 0.1016 0.0152 0.0051 0.1118 17 3.2580 3.5190 3.7810     20.82 19.88 11,187 9,246 34
41.0 0.06900 0.07100 0.07400 0.003959 0.0051 0.0051 0.0914 0.0127 0.0051 0.1016 17 3.9670 4.3170 4.6670     25.76 24.47 13,812 11,187 28
42.0 0.06100 0.06400 0.06600 0.003217 0.0051 0.0051 0.0813 0.0102 0.0051 0.0940 16 4.9350 5.4210 5.9070     31.90 29.70 17,480 13,075 22
43.0 0.05300 0.05600 0.05800 0.002463 0.0051 0.0025 0.0737 0.0102 0.0025 0.0838 15 6.3060 7.0110 7.7160     41.01 38.38 21,284 16,437 17
44.0 0.04800 0.05100 0.05300 0.0020428 0.0025 0.0025 0.0686 0.0102 0.0025 0.0762 14 7.5640 8.4950 9.4250     48.93 46.32 24,554 19,889 14
45.0   0.04470   0.0015696 0.00254 0.00254 0.05842 0.00762 0.00254 0.06477 11 10.105 10.985 11.864     64.54 61.31 33,837 27,528 11
46.0   0.03988   0.0012490 0.00254 0.00254 0.05334 0.00762 0.00254 0.05969 10 12.697 13.803 14.909     80.23 75.68 40,589 32,413 8.8
47.0   0.03556   0.0009931 0.00254 0.00254 0.04826 0.00762 0.00254 0.05334 8 15.972 17.360 18.748     100.2 95.06 49,584 40,589 7.0
48.0   0.03150   0.0007791 0.00254 0.00254 0.04318 0.00508 0.00254 0.04699 7 20.359 22.130 23.902     127.1 121.5 61,937 52,301 5.5
49.0   0.02819   0.0006243 0.00254 0.00254 0.03810 0.00508 0.00254 0.04318 6 25.408 27.616 29.824     159.7 149.4 79,555 61,937 4.4
50.0   0.02515   0.0004966 0.00254 0.00254 0.03556 0.00508 0.00254 0.04064 5 31.937 34.713 37.502     196.3 181.8 91,326 69,921 3.5
51.0   0.02235   0.0003924 0.00254 0.00254 0.03302         40.422 43.933 47.443     242.7   105,916   2.8
52.0   0.01981   0.0003083 0.00254 0.00127 0.02921         51.479 55.941 60.403     309.2   135,349   2.2

* Voltage minimums based upon testing according to twisted pair method.

Goto Download

Printversion of the Technical Data for Selfbonding Wire, based on NEMA MW1000C.

SB Types

Self bonding Wire Types

General

There is a big variety of self bonding wire types available. The different base coats and self bonding overcoats are described in different standards, such as IEC 60317, NEMA MW 1000 or JIS C3202, which sometimes still use different test methods.
Under the respective standard the typical technical values are given for the different base coats such as Polyurethane, Polyester, Polyesterimide etc. and for different bond coats such as Polyvinylbutyral, Polyamide etc.

For easier comparison of products and the evaluation of their suitability for certain applications there is a tick-box below each of the product-codes and a "Compare Selected Items" button in the precolumn of the table. When this button is klicked, only the marked items are left over and appear side by side. This view of the table is also suitable for printing; use the options of your browser for this purpose, please using the "Show all" button makes the invisible products reappear again.

Europe

Selfbonding Copper Wire acc. to IEC


Thermal Stability acc. to IEC 60172

The line chart below is for technical comparison only and cannot be used to forecast lifetime of wound products (see also IEC 60172)



Thermal Stability in Hours [h] vs. Temperature in Degrees Celsius [°C]
Average breakdown voltage at 20°C
Calculation of average value Ds
Ds=t*Vµ(volt), with
Ds : breakdown voltage
t : increase with insulation, t = da - dnom, with
da : outer diameter
dnom : bare wire diameter
Vµ : Volt per micron insulation
Example
Test with cylindrical electrode
dnom = 0.071mm (41 AWG)
da = 0.083mm
t = da - dnom = 0.083 - 0.071 = 0.012mm = 12 µm
Vµ = 220 V/µm, therefore
Ds = 12µ * 220 V/µ = 2,640 V

Calculation of Breakdown Voltage (Test acc. to IEC 60851-5 4.)

Solderability of different Wire Types

Tinning time [sec] for wire 0.25mm Grade 1 vs. Tin bath temp. [°C]
Product-Code
AB15
FS15
FSP18
FS18
PSP15
STP18
QTP18
RT21
Product-Name Butybond AB15 Solabond FS15 Solabond FSP18 Solabond FS18 Solabond PSP15 Thermobond STP18 Thermobond QTP18 Thermobond RT21
General Description
Base coat mod. Polyurethane mod. Polyurethane mod. Polyurethane Polyesterimide mod. Polyurethane mod. Polyurethane mod. Polyurethane A200 + Polyamidimide
Bond coat Polyvinylbutyral Polyamide Polyamide Polyamide Polyamide Polyamide Polyamide aromatic Polyamide
IEC (including the following norms) IEC 60317-35, 60317-2 IEC 60317-35, 60317-2 IEC 60317-36 IEC 60317-35, 60317-2 IEC 60317-35 IEC 60317-38
NEMA (including the following norms) MW 131-C MW 131 MW 131 MW 131 MW 131 MW 102
Diameters available 0.01 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm
Properties Low bonding temperature, wide process window, non-hygroscopic All bonding methods applicable, good processability, hygroscopic (not suited for humid regions) All bonding methods applicable, good processability, hygroscopic Solvent bonding possible, high resoftening temperature, high thermal and mechanical properties of base coat, hygroscopic thus not suitable for Asia All purpose selfbonding enamel, wide process window, high bonding strength, thermosetting applicable, non-hygroscopic Good winding ability, thermosetting applicable higher thermal and mechanical properties, very high resoftening temperature after thermosetting very high thermal and mechanical properties, very high resoftening temperature
Shelf life in months (at 25°C /
60% rel. humidity)
≤ 6 ≤ 3 (hygroscopic) ≤ 5 (hygroscopic) ≤ 5 (hygroscopic) ≤ 6 ≤ 6 ≤ 6 ≤ 6
Applications Stepping motors for quartz watches, instrument coils, voice coils, Sensors, Transponders Loudspeakers, small motors, sensors, Transponders Loudspeakers, small motors, sensors, Transponders Loudspeakers, small motors, sensors, Transponders Instrument coils, loudspeakers, vibration motors, sensors, receiver and speaker for mobile phones High power speaker, vibration motors high power speaker and receiver, micro speaker, high temperature applications motors, loudspeakers
Thermal values of base coat
Temperature index 20.000 h acc. to IEC 60172  158°C  158°C  192°C  195°C  158°C  192°C  192°C  212°C
Thermal stability chart [view]
Cut through temperature
0.05mm: acc. to IEC 60851-6 4 200°C 200°C 230°C 265°C 200°C 230°C 230°C 320°C
Elektrisola typical value  225°C  225°C  260°C  315°C  225°C  260°C  260°C  365°C
0.25mm: acc. to IEC 60851-6 4 200°C 200°C 230°C 265°C 200°C 230°C 230°C 320°C
Elektrisola typical value  230°C  230°C  265°C  325°C  230°C  265°C  265°C  380°C
Heat Shock
0.05mm: acc. to IEC 60851-6 3 175°C 175°C 200°C 200°C 175°C 200°C 200°C 220°C
Elektrisola typical value  190°C  190°C  210°C  260°C  190°C  210°C  210°C  250°C
0.25mm: acc. to IEC 60851-6 3 175°C 175°C 200°C 200°C 175°C 200°C 200°C 220°C
Elektrisola typical value  180°C  180°C  200°C  250°C  180°C  200°C  200°C  240°C
Electrical values
Low voltage continuity for Grade 1B wires
0.05mm: acc. to IEC 60851-5 1 40 40 40 40 40 40 40 40
Elektrisola typical value  0  0  0  0  0  0  0  0
High voltage continuity for Grade 1B wires
0.05mm: Elektrisola typical value  0  0  0  0  0  0  0  0
0.25mm: acc. to IEC 60851-5 2 10 10 10 10 10 10 10 10
0.25mm: Elektrisola typical value  0  0  0  0  0  0  0  0
Breakdown voltage acc. to IEC 60851-5 4 (at 20 °C, 35% humidity)
0.05mm: Elektrisola typical value 160 V/µm 160 V/µm 160 V/µm 160 V/µm 160 V/µm 160 V/µm 160 V/µm 160 V/µm
0.25mm: Elektrisola typical value 120 V/µm 120 V/µm 120 V/µm 120 V/µm 120 V/µm 120 V/µm 120 V/µm 120 V/µm
Calculation method of break voltage [view]
Pinholes acc. to IEC 60851-5 7
with 0.05mm: 0% elongation good good very good very good very good very good
with 0.25mm: 0% elongation good good very good very good very good very good
Mechanical values
Elongation for Grade 1B wire
0.05mm: acc. to IEC 60851-3 3.1 14% 14% 14% 14% 14% 14% 14% 14%
Elektrisola typical value  23%  23%  23%  23%  23%  23%  23%  23%
0.25mm: acc. to IEC 60851-3 3.1 25% 25% 25% 25% 25% 25% 25% 25%
Elektrisola typical value  40%  40%  40%  40%  40%  40%  40%  40%
Tensile strength for Grade 1B wires
0.05mm: Elektrisola typical value 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN 57 cN
0.25mm: Elektrisola typical value 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN 1370 cN
Stress strain chart [view]
Bonding of wire
Hot air bonding 0.01 - 0.50 mm 0.01 - 0.50 mm 0.015 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.015 – 0.50 mm limited
Oven bonding 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 – 0.50 mm 0.10 – 0.50 mm
Resistance bonding 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 - 0.50 mm 0.10 – 0.50 mm 0.10 – 0.50 mm
Solvent bonding limited suitable suitable suitable not suitable not suitable not suitable not suitable
Recommended solvent Ethanol / Methanol Ethanol / Methanol Ethanol / Methanol Ethanol / Methanol N/A N/A N/A N/A
Recommended bonding temperature  120 - 140°C  150 - 170°C  150 - 170°C  150 - 170°C  150 - 170°C  180 - 200°C  200 – 220°C  200 – 220°C
Resoftening temperature for 0.25mm
(IEC 60851-3 7.1.2.4)
100°C 140°C 170°C 180°C 180°C 145°C 190°C 200°C
Bond strength chart
RoHS laboratory analysis view view view view view
Solderability
Solderability for Grade 1B wires
0.05mm: max. acc. to IEC 60851-4 5 2.0s / 390°C 2.0s / 390°C 2.0s / 390°C 3.0s / 470°C 2.0s / 390°C 3.0s / 390°C 3.0s / 390°C ---
Elektrisola typical value 0.8s / 390°C 0.4s / 390°C 0.7s / 390°C 1.3s / 470°C 0.4s / 390°C 0.4s / 420°C 1.0s / 390°C ---
Elektrisola typical value 1.5s / 370°C 0.5s / 370°C 1.0s / 370°C 0.7s / 370°C ---
0.25mm: max. acc. to IEC 60851-4 5 3.0s / 390°C 3.0s / 390°C 3.0s / 390°C 3.0s / 470°C 3.0s / 390°C 3.0s / 390°C 3.0s / 390°C ---
Elektrisola typical value 1.4s / 390°C 0.7s / 390°C 1.6s / 390°C 3.0s / 470°C 0.7s / 390°C 0.8s / 420°C 2.0s / 390°C ---
Elektrisola typical value 2.0s / 370°C 1.2s / 370°C 2.8s / 370°C 1.2s / 370°C
Solderability of different wire types chart [view]

Asia (standard)

Selfbonding Copper Wire acc. to IEC
Product-Code
BQP15
CSP15
ES22
ESP15
KSP15
KSP18
KS18
KS22
Product-Name Polyesterbond BQP15 Solabond CSP15 Solabond ES22 Solabond ESP15 Solabond KSP15 Solabond KSP18 Solabond KS18 Solabond KS22
General Description                
Base coat mod. Polyurethane mod. Polyurethane Polyamideimide mod. Polyurethane mod. Polyurethane mod. Polyurethane Polyesterimide Polyamideimide
Bond coat mod. Polyester Polyamide Polyamide Polyamide Polyamide Polyamide Polyamide Polyamide
IEC (including the following standards) IEC 60317-35, 60317-2 IEC 60317-35, 60317-2 --- IEC 60317-35, 60317-2 IEC 60317-35, 60317-2 IEC 60317-35 IEC 60317-36 ---
NEMA (including the following standards) MW 131 MW 131 --- MW 131 MW 131 --- --- ---
Diameters available 0.015 - 0.50 mm 0.015 - 0.50 mm 0.050 - 0.70 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.050 - 0.60 mm
Properties Easy bonding, wide process window Excellent solvent bonding, heat bonding possible Suitable for hot air bonding, very high thermal properties of base coat Suitable for hot air bonding, very good winding properties Suitable for hot air bonding, excellent solderability Suitable for hot air bonding, high thermal properties of base coat Suitable for hot air bonding, higher thermal properties of base coat Suitable for hot air bonding, very high thermal properties of base coat
Shelf life in months (at 25°C /
60% rel. humidity)
≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6
Applications For sensors, instrument coils, RFID, transponders, card application For voice coils, small motor, vibration motors, transponders For molding inductor, small motor For sensors, instrument coils, voice coils, vibration motors For small motor, instrument coils, loudspeaker, sensors For small motor, instrument coils, loudspeaker, sensors, transponders For small motor, loudspeaker For small motor, inductor
Thermal values of base coat                
Temperature index 20.000 h acc. IEC 60172  164°C  164°C  230°C  164°C  164°C  192°C  195°C  230°C
Cut through temperature min. °C acc. to IEC 60851-6 4. 200°C 200°C 350°C 200°C 200°C 230°C 265°C 350°C
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  225 / 230°C  225 / 230°C  390 / 410°C  225 / 230°C  225 / 230°C  260 / 265°C  315 / 325°C  390 / 410°C
Heat shock min. °C acc. to IEC 60851-6 3. 175°C 175°C 240°C 175°C 175°C 200°C 200°C 240°C
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  190 / 180°C  190 / 180°C  250 / 240°C  190 / 180°C  190 / 180°C  210 / 200°C  260 / 250°C  250 / 240°C
Electrical values                
Low voltage continuity max. acc. to IEC 60851-5 5.2 for 0.05 mm 40 40 40 40 40 40 40 40
ELEKTRISOLA-typical values for 0.05 mm, Grade 1B  0  0  0  0  0  0  0  0
High voltage continuity max. acc. to IEC 60851-5 5.3 for 0.25 mm 10 10 10 10 10 10 10 10
ELEKTRISOLA-typical values for 0.25 mm, Grade 1B  0  0  0  0  0  0  0  0
Breakdown voltage acc. IEC 60851-5 4., (at 20°C, 35% humidity)                
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/µm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm
Mechanical values                
Elongation min. acc. to IEC 60851-3 3.1 for 0.05 mm/0.25 mm, Grade 1B 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25%
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%
Tensile strength                
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN
Bonding of wire                
Hot air bonding Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable
Oven bonding Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable
Resistance bonding Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable
Solvent bonding Not suitable Suitable Not suitable Not suitable Not suitable Not suitable Not suitable Not suitable
Recommended solvent -- Ethanol / Isopropanol --- --- --- --- --- ---
Recommended bonding temperature  120 - 140°C  170 - 200°C  160 - 190°C  160 - 190°C  150 - 170°C  150 - 170°C  150 - 170°C  150 - 170°C
Resoftening temperature 90°C 140°C 130°C 130°C 105°C 105°C 105°C 105°C
Solderability                
Acc. to IEC 60851-4 5. max . seconds at °C for 0.05 mm/0.25 mm, Grade 1B 2.0s/390°C / 3.0s/390°C 2.0s/390°C / 3.0s/390°C Not Solderable 2.0s/390°C / 3.0s/390°C 2.0s/390°C / 3.0s/390°C 3.0s/390°C / 3.0s/390°C 3.0s/470°C / 3.0s/470°C Not Solderable
ELEKTRISOLA-typical values IEC 60851-4 5.                
for 0.05 mm, Grade 1B, 0.5s/370°C / 0.4s/390°C 1.0s/370°C / 0.6s/390°C --- 1.0s/370°C / 0.6s/390°C 0.5s/370°C / 0.4s/390°C 1.0s/370°C / 0.7s/390°C 1.9s/470°C ---
seconds at °C  
for 0.25 mm, Grade 1B, 1.2s/370°C / 0.7s/390°C 1.6s/370°C / 0.8s/390°C --- 1.6s/370°C / 0.8s/390°C 1.2s/370°C / 0.7s/390°C 2.8s/370°C / 1.6s/390°C 3.4s/470°C ---
seconds at °C    

Asia (high performance)

Selfbonding Copper Wire acc. to IEC
Product-Code
PSP15
PSP18
STP18
KTP18
KT22
LTP18
ETP18
ET22
Product-Name Solabond PSP15 Solabond PSP18 Thermobond STP18 Thermobond KTP18 Thermobond KT22 Thermobond LTP18 Thermobond ETP18 Thermobond ET22
General Description                
Base coat mod.Polyurethane mod.Polyurethane mod.Polyurethane mod.Polyurethane mod.Polyamidimide mod.Polyurethane mod.Polyurethane mod.Polyamidimide
Bond coat Polyamide Polyamide Polyamide Polyamide Polyamide Polyamide Polyamide Polyamide
IEC (including the following standards) IEC 60317-35, 60317-2 IEC 60317-35 IEC 60317-35 IEC 60317-35 --- IEC 60317-35 IEC 60317-35 ---
NEMA (including the following standards) MW 131 --- MW 131 --- --- --- --- ---
Diameters available 0.010 - 0.50 mm 0.010 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm
Properties high resoftening temperature after thermosetting, very good properties for hot-air bonding, very good winding properties, non-hyproscopic Thermosetting possible, high bonding strength, non-hygroscopic Higher thermal and mechanical properties, very high resoftening temperature after thermosetting, non-hygroscopic High resoftening temperature, suitable for High Current Test (HCT), high bonding strength, non-hygroscopic Very High resoftening temperature, suitable for High Current Test (HCT), high bonding strength, non-hygroscopic High resoftening temperature, suitable for High Current Test (HCT), high bonding strength, non-hygroscopic Excellent winding performance, high resoftening temperature, high bonding strength at the coil ends, suitable for High Current Test (HCT), non-hygroscopic Excellent winding performance, high resoftening temperature, high bonding strength at the coil ends, suitable for High Current Test (HCT), non-hygroscopic
Shelf life in months (at 25°C /
60% rel. humidity)
≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6
Applications Instrument coils, loudspeakers, small motors, sensors, receiver and speaker for mobile phones Instrument coils, loudspeakers, motors, sensors High power speaker and receiver, micro speaker, high temperature applications High power speaker / receiver, Micro speaker High power speaker / receiver, Micro speaker Loudspeakers, Stepping motors, Voice coils, Sensors, Transponders High power speaker / receiver, Micro speaker High power speaker / receiver, Micro speaker
Thermal values of base coat                
Temperature index 20.000 h acc. IEC 60172  158°C  192°C  192°C  192°C  230°C  192°C  192°C  230°C
Cut through temperature min. °C acc. to IEC 60851-6 4. 200°C 230°C 230°C 230°C 350°C 230°C 230°C 350°C
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  225 / 230°C  260 / 265°C  260 / 265°C  260 / 265°C  390 / 410°C  260 / 265°C  260 / 265°C  390 / 410°C
Heat shock min. °C acc. to IEC 60851-6 3. 175°C 200°C 200°C 200°C 220°C 200°C 200°C 200°C
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  190 / 180°C  210 / 200°C  210 / 200°C  210 / 200°C  250 / 240°C  210 / 200°C  210 / 200°C  250 / 240°C
Electrical values                
Low voltage continuity max. acc. to IEC 60851-5 5.2 for 0.05 mm Grade 1 B 40 40 40 40 40 40 40 40
ELEKTRISOLA-typical values for 0.05 mm, Grade 1B  0  0  0  0  0  0  0  0
High voltage continuity max. acc. to IEC 60851-5 5.3 for 0.25 mm Grade 1B 10 10 10 10 10 10 10 10
ELEKTRISOLA-typical values for 0.25 mm, Grade 1B  0  0  0  0  0  0  0  0
Breakdown voltage acc. IEC 60851-5 4., (at 20°C, 35% humidity)                
ELEKTRISOLA-typical values test for 0.05 mm/0.25 mm, Grade 1B 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm 160 / 120 V/μm
Mechanical values                
Elongation min. acc. to 60851-3 3.1 for 0.05 mm/0.25 mm, Grade 1B 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25%
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%
Tensile strength                
ELEKTRISOLA-typical values for 0.05 mm/0.25 mm, Grade 1B 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN 57 / 1370 cN
Bonding of wire                
Hot air bonding 0.010-0.50mm 0.010-0.50mm 0.015-0.50mm 0.015-0.50mm 0.015-0.50mm Limited 0.015-0.50mm 0.015-0.50mm
Oven bonding 0.100-0.50mm 0.100-0.50mm 0.100-0.50mm 0.100-0.50mm 0.100-0.50mm Limited 0.100-0.50mm 0.100-0.50mm
Resistance bonding 0.100-0.50mm. 0.100-0.50mm 0.100-0.50mm 0.100-0.50mm 0.100-0.50mm Limited 0.100-0.50mm 0.100-0.50mm
Solvent bonding Not suitable Not suitable Not suitable Not suitable Not suitable 0.015-0.50mm Not suitable Not suitable
Recommended solvent --- --- --- --- --- Ethanol/Methanol --- ---
Recommended bonding temperature  150 - 170°C  150 - 170°C  180 - 200°C  220°C  220°C  220°C  220°C  220°C
Resoftening temperature (after postbacking) 125°C (180°C) 125°C (180°C) 145°C (190°C) 230°C 230°C 210°C 260°C 260°C
Solderability                
acc. to IEC 60851-4 5. max . seconds at °C for 0.05 mm/0.25 mm, Grade 1B 2.0s/390°C / 3.0s/390°C 3.0s/390°C / 3.0s/390°C 3.0s/390°C / 3.0s/390°C 3.0s/390°C / 3.0s/390°C Not solderable 3.0s/390°C / 3.0s/390°C 3.0s/390°C / 3.0s/390°C Not solderable
ELEKTRISOLA-typical values IEC 60851-4 5.                
for 0.05 mm, Grade 1B, 0.7s/370°C / 0.4s/390°C 1.2s/390°C 0.4s/420°C 0.5s/470°C --- n.a/420°C 0.6s/470°C ---
seconds at °C  
for 0.25 mm, Grade 1B, 1.2s/370°C / 0.7s/390°C 1.5s/390°C 0.8s/420°C --- --- n.a/420°C --- ---
seconds at °C  

America

Selfbonding Copper Wire acc. to NEMA
Product-Code
ABN15
FS15
FSP18
FS18
AE21
AQ21
UT18
RT21
General Description
Base Coat / Base Coat Type mod. Polyurethane+Polyamide mod. Polyurethane mod. Polyurethane Polyesterimide A200 + Polyamidimide A200 + Polyamidimide Polyesterimide A200 + Polyamidimide
Bond Coat / Bond Coat Type Polyvinylbutyral Polyamide Polyamide Polyamide Epoxy Polyester Polyamide Aromatic Polyamide
NEMA (including the following norms) MW136 MW131 MW137 MW102 MW102
IEC (including the following norms) IEC 60317-35, 60317-2 IEC 60317-35, 60317-2 IEC 60317-35 IEC 60317-36 IEC 60317-38 IEC 60317-38 IEC 60317-36 IEC 60317-38
Diameter Available
AWG 24-58 AWG 24-58 AWG 24-58 AWG 24-54 AWG 24-58 AWG 24-54 AWG 24-54 AWG 24-58 AWG
mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.01 - 0.50 mm 0.015 - 0.50 mm 0.01 - 0.50 mm 0.015 - 0.50 mm 0.015 - 0.50 mm 0.01 - 0.50 mm
Properties Low Bonding Temperature Solvent Bonding Possible Solvent bonding possible, higher thermal properties. Solvent bonding possible, higher thermal properties. Low bonding temperature & Solvent bonding possible. High thermal and mechanical properties and high resoftening temperature. High thermal and mechanical properties, high resoftening temperature. Very high thermal and mechanical properties, very high resoftening temperature (non hygroscopic)
Shelf life in months (at 25°C /
60% rel. humidity)
≤ 6 ≤ 3 (hygroscopic) ≤ 5 (hygroscopic) ≤ 5 (hygroscopic) ≤ 6 ≤ 6 ≤ 6 (Hygroscopic) ≤ 6
Applications Stepper motors for watches, instrument coils, voice coils, sensors, transponders Instrument coils, loudspeakers, small motors, sensors Instrument coils, loudspeakers, small motors, sensors, transponders High power speaker and receiver, micro speaker, high temperature applications Instrument coils, loudspeakers, small motors, sensors, receiver and speaker for mobile phones High power speaker and receiver, micro speaker, high temperature applications High power speaker and receiver, micro speaker, high temperature applications Motors, loudspeakers 
Thermal Values of Base Coat
Temperature index 20.000 h acc. To IEC 60172  158°C  158°C  192°C  195°C  212°C  212°C  195°C  212°C
Cut-through Temperature 
Acc. to NEMA MW1000 3.5 for 44/30AWG: 200°C / ≥ 200°C 200°C / ≥ 200°C 230°C / ≥ 230°C 225°C 320°C 320°C 265°C 320°C
Elektrisola typical value for 44/30AWG:  225°C / 230°C  225°C / 230°C  260°C / 265°C  260°C / 265°C  365°C / 380°C  365°C / 380°C  260°C / 265°C  365°C / 380°C
Heat Shock 
Acc. To NEMA MW1000 3.5 for 44/30AWG: 175°C / ≥ 175°C 175°C / ≥ 175°C 200°C / ≥ 200°C 200°C 220°C 220°C 200°C 220°C
Elektrisola typical value for 44/30AWG:  190°C / 180°C  190°C / 180°C  210°C / 200°C  310°C / 320°C  250°C / 240°C  250°C / 240°C  310°C / 320°C  250°C / 240°C
Mechanical Values
Elongation for Type 1
Acc. to NEMA MW1000 3.4 for 44/30AWG: 10% / ≥ 22% 10% / ≥ 22% 10% / ≥ 22% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25% 14% / ≥ 25%
Elektrisola typical value for 44/30AWG:  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%  23% / 40%
Bonding of Wire
Hot Air Bonding 24-58 AWG 24-58 AWG 24-58 AWG 24-58 AWG 24-58 AWG 24-58 AWG 24-58 AWG 24-58 AWG
Oven Bonding 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG
Resistance Bonding 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG 38-24 AWG
Solvent Bonding Limited Suitable Suitable Suitable Suitable Suitable N/A N/A
Recommended Solvent Ethanol / Methanol Ethanol / Methanol Ethanol / Methanol Ethanol / Methanol Acetone/MEK Acetone/MEK
Recommended Bonding Temperature  120°C - 140°C  150°C - 170°C  150°C - 170°C  180°C - 220°C  120°C - 140°C  160°C - 190°C  180°C - 220°C  200°C - 220°C
Resoftening Temperature for 30AWG 100°C 140°C 170°C 180°C 100°C 180°C 180°C 200°C
Solderability
Solderability for Type 1
Acc. to NEMA MW1000 3.11 for 44/30AWG: 2.0s/390°C / 3.0s/390°C 2.0s/390°C / 3.0s/390°C 2.0s/390°C / 3.0s/390°C 2.0s/470°C / 3.0s/470°C - - -
Elektrisola typical value for 44 AWG: 0.8s/390°C / 1.3s/370°C 0.4s/390°C / 0.5s/370°C 0.7s/390°C / 1.0s/370°C 1.6s/470C - - -
Elektrisola typical value for 30 AWG: 1.4s/390°C / 2.8s/370°C 0.7s/390°C / 1.2s/370°C 2.0s/390°C / 2.8s/370°C 3.0s/470C - - 5.5s/470C -

Elektrisola typical values are the result of various tests and represent average values.

We believe that all information in this catalogue is reliable and accurate, but the accuracy or completeness thereof is not guaranted.

EW Technical Data

Technical Data by Size

General

Technical values of enamelled wires often depend on the diameter of the wire.

Most important are the tolerances for resistance and outer diameter. These and other values are important as engineering support.

Different standards specify these values differently. Therefore the 3 major world standards are shown:

  • IEC 60317 for Europe and Asia
  • JIS C3202 for Asia
  • NEMA MW 1000C (inch) and NEMA MW 1000C metric (mm) for America

Printversions can be found below the individual tabs.

Europe / Asia IEC 60317

Technical Data for Enamelled Copper Wire by Size acc. to IEC 60317

Enamelled Copper Wire
(overall diameter)
Breakdown Voltage
acc to IEC **
Length
of 1 kg of enamelled wire
Filling Factor number of enamelled wires/cm²
Nominal
Diameter
Conductor
(Bare Wire)
Grade 1 Grade 2 Grade 3 Resistance at 20 °C Elongation
acc to IEC
Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Winding Tension

[mm]
tolerance
[mm]
section
[mm²]
min
[mm]
max
[mm]
min
[mm]
max
[mm]
min
[mm]
max
[mm]
nom
[Ohm/m]
min
[Ohm/m]
max
[Ohm/m]
min
[%]
min
[V]
min
[V]
min
[V]
approx.
[km]
approx.
[km]
approx.
[km]

[n]

[n]

[n]
max
[cN]
0.010 * 0.000078540 0.012 0.013 0.014 0.016 0.017 0.019 217.65 195.88 239.41 3 70 125 170 1315.6 1202.0 1069.1 739090 513257 356428 1.4
0.012 * 0.00011310 0.014 0.016 0.017 0.018 0.019 0.021 151.14 136.03 166.26 3 80 150 190 913.6 847.9 782.9 513257 377087 288707 2.0
0.014 * 0.00015394 0.016 0.018 0.019 0.020 0.021 0.023 111.04 99.94 122.15 4 90 175 230 679.4 638.1 596.8 399595 303702 238601 2.5
0.016 * 0.00020106 0.018 0.020 0.021 0.022 0.023 0.025 85.02 76.52 93.52 5 100 200 290 524.9 497.3 469.5 319897 249828 200491 3.2
0.018 * 0.00025447 0.020 0.022 0.023 0.024 0.025 0.026 67.18 60.46 73.89 5 110 225 350 417.6 398.3 382.7 261866 209113 177598 3.9
0.019 * 0.00028353 0.021 0.023 0.024 0.026 0.027 0.028 60.29 54.26 66.32 6 115 240 380 375.9 356.2 339.6 238601 184773 152705 4.3
0.020 * 0.00031416 0.022 0.024 0.025 0.027 0.028 0.030 54.41 48.97 59.85 6 120 250 410 340.1 323.2 306.2 218304 170833 137316 4.4
0.021 * 0.00034636 0.023 0.026 0.027 0.028 0.029 0.031 49.35 44.42 54.29 6 125 265 440 306.8 292.2 279.9 192391 152705 128314 5.1
0.022 * 0.00038013 0.024 0.027 0.028 0.030 0.031 0.033 44.97 40.47 49.47 6 130 275 470 280.2 265.4 252.6 177598 137316 112776 5.5
0.023 * 0.00041548 0.025 0.028 0.029 0.031 0.032 0.034 41.14 37.03 45.26 7 145 290 470 257.0 244.0 232.8 164447 128314 106045 6.0
0.024 * 0.00045239 0.026 0.029 0.030 0.032 0.033 0.035 37.79 34.01 41.56 7 145 290 470 236.5 225.1 215.3 152705 120169 99899 6.5
0.025 * 0.00049087 0.028 0.031 0.032 0.034 0.035 0.037 34.82 31.34 38.31 7 150 300 470 215.5 205.4 196.7 132701 106045 89107 7.0
0.027 * 0.00057256 0.030 0.033 0.034 0.036 0.037 0.040 29.86 26.87 32.84 7 165 315 510 185.6 177.6 169.5 116385 94272 77910 8.0
0.028 * 0.00061575 0.031 0.034 0.035 0.038 0.039 0.042 27.76 24.99 30.54 7 170 325 530 172.9 164.7 156.4 109333 86683 70406 8.5
0.030 * 0.00070686 0.033 0.037 0.038 0.041 0.042 0.044 24.18 21.76 26.60 8 180 350 560 150.3 142.8 136.9 94272 74016 62457 9.6
0.032 * 0.00080425 0.035 0.039 0.040 0.043 0.044 0.047 21.25 19.13 23.38 8 190 375 590 132.6 126.4 120.8 84356 67053 55782 10.8
0.034 * 0.00090792 0.037 0.041 0.042 0.046 0.047 0.050 18.83 17.13 20.52 8 210 400 620 117.8 112.1 106.9 75926 59650 49095 12.0
0.036 * 0.0010179 0.040 0.044 0.045 0.049 0.050 0.053 16.79 15.28 18.31 8 225 425 650 104.4 99.57 95.18 65466 52278 43541 13.2
0.038 * 0.0011341 0.042 0.046 0.047 0.051 0.052 0.055 15.07 13.72 16.43 10 240 450 680 93.97 89.87 86.14 59650 48098 40347 14.5
0.040 * 0.0012566 0.044 0.049 0.050 0.054 0.055 0.058 13.60 12.38 14.83 10 250 475 710 84.68 80.81 77.61 53409 42708 36176 15.9
0.043 * 0.0014522 0.047 0.052 0.053 0.058 0.059 0.063 11.77 10.71 12.83 12 265 520 710 73.55 70.15 67.01 47131 37491 31035 18.0
0.045 * 0.0015904 0.050 0.055 0.056 0.061 0.062 0.066 10.75 9.781 11.72 12 275 550 710 66.82 63.85 61.10 41899 33745 28194 19.4
0.048 * 0.0018096 0.053 0.059 0.060 0.064 0.065 0.069 9.447 8.596 10.30 14 290 580 780 58.73 56.28 54.22 36825 30042 25726 21.7
0.050 * 0.0019635 0.055 0.060 0.061 0.066 0.067 0.072 8.706 7.922 9.489 14 300 600 830 54.42 52.26 50.08 34929 28640 23908 23.2
0.053 * 0.0022062 0.058 0.064 0.065 0.070 0.071 0.076 7.748 7.051 8.446 15 315 625 860 48.42 46.45 44.62 31035 25346 21377 25.6
0.056 * 0.0024630 0.062 0.067 0.068 0.074 0.075 0.079 6.940 6.316 7.565 15 325 650 890 43.36 41.69 40.14 27759 22909 19478 28.2
0.060 * 0.0028274 0.066 0.072 0.073 0.079 0.080 0.085 6.046 5.502 6.590 16 355 680 960 37.79 36.33 34.97 24256 19994 16967 31.7
0.063 * 0.0031172 0.069 0.076 0.077 0.083 0.084 0.088 5.484 4.990 5.977 16 375 700 1020 34.27 32.92 31.83 21971 18044 15614 34.4
0.067 * 0.0035257 0.074 0.080 0.081 0.088 0.089 0.091 4.848 4.412 5.285 17 400 700 1060 30.31 29.19 28.36 19478 16173 14257 38
0.070 * 0.0038485 0.077 0.083 0.084 0.090 0.091 0.096 4.442 4.042 4.842 17 425 700 1100 27.83 26.91 26.06 18044 15257 13210 41
0.071 ±0.003 0.0039592 0.078 0.084 0.085 0.091 0.092 0.096 4.318 3.929 4.706 17 425 700 1100 27.07 26.19 25.43 17601 14913 13070 42
0.075 ±0.003 0.0044179 0.082 0.089 0.090 0.095 0.096 0.102 3.869 3.547 4.235 17 425 765 1140 24.26 23.52 22.82 15797 13497 11783 46
0.080 ±0.003 0.0050265 0.087 0.094 0.095 0.101 0.102 0.108 3.401 3.133 3.703 17 425 850 1200 21.39 20.73 20.11 14100 12024 10475 52
0.085 ±0.003 0.0056745 0.093 0.100 0.101 0.107 0.108 0.114 3.012 2.787 3.265 18 465 875 1250 18.92 18.37 17.86 12401 10677 9373 57
0.090 ±0.003 0.0063617 0.098 0.105 0.106 0.113 0.114 0.120 2.687 2.495 2.900 18 500 900 1300 16.92 16.43 15.96 11209 9631 8436 63
0.095 ±0.003 0.0070882 0.103 0.111 0.112 0.119 0.120 0.126 2.412 2.247 2.594 19 500 925 1350 15.19 14.75 14.35 10087 8657 7633 69
0.100 ±0.003 0.0078540 0.108 0.117 0.118 0.125 0.126 0.132 2.176 2.034 2.333 19 500 950 1400 13.72 13.31 12.97 9125 7823 6940 75
0.106 ±0.003 0.0088247 0.115 0.123 0.124 0.132 0.133 0.140 1.937 1.816 2.069 20 1200 2650 3800 12.22 11.88 11.56 8155 7049 6198 83
0.110 ±0.003 0.0095033 0.119 0.128 0.129 0.137 0.138 0.145 1.799 1.690 1.917 20 1300 2700 3900 11.34 11.03 10.74 7572 6529 5768 88
0.112 ±0.003 0.0098520 0.121 0.130 0.131 0.139 0.140 0.147 1.735 1.632 1.848 20 1300 2700 3900 10.95 10.65 10.37 7332 6337 5608 91
0.118 ±0.003 0.010936 0.128 0.136 0.137 0.145 0.146 0.154 1.563 1.474 1.660 20 1400 2750 4000 9.870 9.626 9.379 6628 5809 5133 99
0.120 ±0.003 0.011310 0.130 0.138 0.139 0.148 0.149 0.157 1.511 1.426 1.604 20 1500 2800 4100 9.550 9.305 9.057 6431 5608 4933 102
0.125 ±0.003 0.012272 0.135 0.144 0.145 0.154 0.155 0.163 1.393 1.317 1.475 20 1500 2800 4100 8.803 8.575 8.356 5934 5167 4568 110
0.130 ±0.003 0.013273 0.141 0.150 0.151 0.160 0.161 0.169 1.288 1.220 1.361 21 1550 2900 4150 8.131 7.928 7.733 5455 4776 4242 118
0.132 ±0.003 0.013685 0.143 0.152 0.153 0.162 0.163 0.171 1.249 1.184 1.319 21 1550 2900 4150 7.891 7.697 7.511 5308 4655 4141 121
0.140 ±0.003 0.015394 0.151 0.160 0.161 0.171 0.172 0.181 1.110 1.055 1.170 21 1600 3000 4200 7.030 6.860 6.687 4776 4191 3707 133
0.150 ±0.003 0.017671 0.162 0.171 0.172 0.182 0.183 0.193 0.9673 0.9219 1.0159 22 1650 3100 4300 6.125 5.987 5.840 4166 3686 3267 150
0.160 ±0.003 0.020106 0.172 0.182 0.183 0.194 0.195 0.205 0.8502 0.8122 0.8906 22 1700 3200 4400 5.390 5.265 5.139 3686 3250 2887 168
0.170 ±0.003 0.022698 0.183 0.194 0.195 0.205 0.206 0.217 0.7531 0.7211 0.7871 23 1700 3250 4550 4.771 4.667 4.561 3250 2887 2582 186
0.180 ±0.003 0.025447 0.193 0.204 0.205 0.217 0.218 0.229 0.6718 0.6444 0.7007 23 1700 3300 4700 4.263 4.168 4.072 2931 2594 2312 206
0.190 ±0.003 0.028353 0.204 0.216 0.217 0.228 0.229 0.240 0.6029 0.5794 0.6278 24 1750 3400 4900 3.823 3.743 3.664 2619 2333 2100 226
0.200 ±0.003 0.031416 0.214 0.226 0.227 0.239 0.240 0.252 0.5441 0.5237 0.5657 24 1800 3500 5100 3.456 3.384 3.312 2386 2127 1908 247
0.212 ±0.003 0.035299 0.227 0.240 0.241 0.254 0.255 0.268 0.4843 0.4669 0.5026 24 1850 3600 5150 3.075 3.010 2.944 2118 1885 1689 274
0.224 ±0.003 0.039408 0.239 0.252 0.253 0.266 0.267 0.280 0.4338 0.4188 0.4495 24 1900 3700 5200 2.759 2.704 2.648 1916 1715 1544 302
0.236 ±0.004 0.043744 0.253 0.267 0.268 0.283 0.284 0.298 0.3908 0.3747 0.4079 25 2000 3800 5350 2.481 2.429 2.376 1708 1522 1364 331
0.250 ±0.004 0.049087 0.267 0.281 0.282 0.297 0.298 0.312 0.3482 0.3345 0.3628 25 2100 3900 5500 2.215 2.171 2.127 1538 1378 1241 366
0.265 ±0.004 0.055155 0.283 0.297 0.298 0.314 0.315 0.330 0.3099 0.2982 0.3223 26 2150 3950 5650 1.972 1.934 1.895 1373 1233 1110 406
0.280 ±0.004 0.061575 0.298 0.312 0.313 0.329 0.330 0.345 0.2776 0.2676 0.2882 26 2200 4000 5800 1.769 1.737 1.704 1241 1121 1014 448
0.300 ±0.004 0.070686 0.319 0.334 0.335 0.352 0.353 0.369 0.2418 0.2335 0.2506 26 2200 4050 5950 1.542 1.514 1.485 1083 979 886 507
0.315 ±0.004 0.077931 0.334 0.349 0.350 0.367 0.368 0.384 0.2193 0.2121 0.2270 26 2200 4100 6100 1.400 1.376 1.351 990 899 817 553
0.335 ±0.004 0.088141 0.355 0.372 0.373 0.391 0.392 0.408 0.1939 0.1878 0.2004 27 2250 4200 6250 1.238 1.216 1.195 874 791 722 618
0.355 ±0.004 0.098980 0.375 0.392 0.393 0.411 0.412 0.428 0.1727 0.1674 0.1782 27 2300 4300 6400 1.104 1.086 1.068 785 715 655 687
0.375 ±0.005 0.11045 0.396 0.414 0.415 0.434 0.435 0.453 0.1548 0.1494 0.1604 27 2300 4350 6500 0.989 0.973 0.957 704 641 586 759
0.400 ±0.005 0.12566 0.421 0.439 0.440 0.459 0.460 0.478 0.1360 0.1316 0.1407 27 2300 4400 6600 0.871 0.858 0.844 625 572 525 854
0.425 ±0.005 0.14186 0.447 0.466 0.467 0.488 0.489 0.508 0.1205 0.1167 0.1244 28 2300 4400 6700 0.772 0.760 0.748 554 506 465 954
0.450 ±0.005 0.15904 0.472 0.491 0.492 0.513 0.514 0.533 0.1075 0.1042 0.1109 28 2300 4400 6800 0.689 0.679 0.669 498 457 421 1060
0.475 ±0.005 0.17721 0.499 0.519 0.520 0.541 0.542 0.562 0.09646 0.09366 0.09938 28 2350 4500 6900 0.618 0.609 0.601 446 410 379 1170
0.500 ±0.005 0.19635 0.524 0.544 0.545 0.566 0.567 0.587 0.08706 0.08462 0.08959 28 2400 4600 7000 0.559 0.551 0.543 405 374 347 1287

* Resistance tolerance is binding.

* * Diameters ≤ 0.100 mm measured using cylinder method, diameters > 0,100 mm measured using twist method.

Goto Download printversion

Asia JIS C3202

Technical Data for Enamelled Copper Wire by Size according to JIS C3202

Minimum Insulation and Max Outer Diameter Breakdown Voltage acc. to JIS ** Length of 1kg of enamelled wire Filling Factor number of enamelled wires/cm²
Resistance at 20 °C Class 0 Class 1 Class 2 Class 3 Elongation acc. to JIS Class 0 Class 1 Class 2 Class 3 Class 0 Class 1 Class 2 Class 3 Class 0 Class 1 Class 2 Class 3 Winding Tension
Nominal
Diameter
Bare Wire
Tolerance *
section nom max * max * ins.thickn. max dia. ins.thickn. max dia. ins.thickn. max dia. ins.thickn. max dia. min min min min min approx. approx. approx. approx. max
Class2/Class3 Class1/Class0 Class2/Class3 Class1/Class0
[mm] [mm] [mm] [mm²] [Ohm/km] [Ohm/km] [Ohm/km] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [%] [V] [V] [V] [V] [km] [km] [km] [km] [n] [n] [n] [n] [cN]
0.012     0.000113097 157162                                   847.9 900.5     377087 480678 2.0
0.014     0.000153938 115466                                   638.1 671.2     303702 377087 2.5
0.016     0.000201062 88404                                   497.3 519.4     249828 303702 3.2
0.018     0.000254469 69850                                   398.3 413.8     209113 249828 3.9
0.019     0.000283529 62691                                   356.2 372.6     184773 228114 4.3
0.020 ±0.002   0.000314159 56578 69850           0.003 0.030 0.002 0.028 3     100 40     311.9 323.2     147300 170833 4.7
0.021 ±0.002   0.000346361 51318 62691           0.003 0.032 0.002 0.030 5     120 60     282.4 292.2     132701 152705 5.1
0.022 ±0.002   0.000380133 46759 56578           0.003 0.033 0.002 0.031 5     120 60     259.0 267.6     124142 142176 5.5
0.023 ±0.002   0.000415476 42781 51318           0.003 0.035 0.002 0.032 5     120 60     236.6 245.9     112776 132701 6.0
0.024 ±0.002   0.000452389 39291 46759           0.003 0.036 0.002 0.033 5     120 60     218.5 226.8     106045 124142 6.5
0.025 ±0.002   0.000490874 36210 42780           0.003 0.037 0.002 0.034 5     120 60     202.5 209.8     99899 116385 7.0
0.027 ±0.002   0.000572555 31044 36210           0.003 0.040 0.002 0.037 5     150 70     174.1 179.9     86683 99899 8.0
0.028 ±0.002   0.000615752 28867 33478           0.003 0.042 0.002 0.038 5     150 70     161.6 167.8     79974 94272 8.5
0.030 ±0.002   0.000706858 25146 28870           0.003 0.044 0.002 0.040 5     150 70   136.1 142.0 147.0   61029 72177 84356 9.6
0.032 ±0.002   0.000804248 22101 25146           0.003 0.047 0.002 0.043 7     200 100   120.2 125.0 129.2   54576 63935 74016 10.8
0.034 ±0.002   0.000907920 19577 22101           0.003 0.049 0.002 0.045 7     200 100   107.4 111.5 115.0   50123 58317 67053 12.0
0.036 ±0.002   0.00101788 17462 19577           0.003 0.052 0.002 0.048 7     200 100   96.64 99.57 102.5   46193 52278 59650 13.2
0.038 ±0.002   0.00113411 15673 17462           0.003 0.054 0.002 0.050 7     200 100   87.38 89.87 92.34   42708 48098 54576 14.5
0.040 ±0.002   0.00125664 14145 15670           0.003 0.056 0.002 0.052 7     200 100   79.39 81.52 83.63   39603 44399 50123 15.9
0.043 ±0.003   0.00145220 12240 14145           0.004 0.061 0.003 0.056 10           68.15 69.87 71.86   33175 36825 41899 18.0
0.045 ±0.003   0.00159043 11176 12830           0.004 0.064 0.003 0.058 10           62.35 63.85 65.83   30533 33745 38880 19.4
0.048 ±0.003   0.00180956 9823 11176           0.004 0.067 0.003 0.062 10           55.25 56.49 57.92   27759 30533 34329 21.7
0.050 ±0.003   0.00196350 9053 10240           0.004 0.069 0.003 0.064 10     950 700 46.46 50.08 52.26 53.52 18272 23908 28640 32079 23.2
0.053 ±0.003   0.00220618 8057 9053           0.004 0.073 0.003 0.068 10     950 700 41.88 44.62 46.61 47.67 16967 21377 25726 28640 25.6
0.056 ±0.003   0.00246301 7217 8057           0.004 0.076 0.003 0.071 10     950 700 37.69 40.27 41.95 42.85 15434 19733 23568 26114 28.2
0.060 ±0.003   0.00282743 6286 6966           0.004 0.081 0.003 0.075 10     950 700 33.28 35.18 36.65 37.48 14100 17386 20807 23235 31.7
0.063 ±0.003   0.00311725 5644 6222           0.004 0.084 0.003 0.078 10     950 700 30.29 32.10 33.37 34.09 12932 16173 19227 21377 34.4
0.067 ±0.003   0.00352565 4990 5469           0.004 0.088 0.003 0.082 10     950 700 27.00 28.59 29.64 30.24 11783 14745 17386 19227 38
0.070 ±0.003   0.00384845 4572 4990           0.004 0.091 0.003 0.085 10     950 700 24.86 26.25 27.24 27.76 10992 13644 16173 17821 41
0.071 ±0.003   0.00395919 4444 4844           0.005 0.093 0.003 0.086 10     1100 700 24.03 25.43 26.32 27.01 10475 13070 15257 17386 42
0.075 ±0.003   0.00441786 3982 4321           0.005 0.098 0.003 0.091 10     1100 700 21.69 22.88 23.63 24.21 9631 11903 13794 15614 46
0.080 ±0.003   0.00502655 3500 3778           0.005 0.103 0.003 0.097 10     1100 700 18.96 20.20 20.86 21.30 8294 10677 12401 13794 52
0.085 ±0.003   0.00567450 3100 3331           0.005 0.108 0.003 0.102 10     1100 700 16.82 17.90 18.56 18.92 7391 9458 11209 12401 57
0.090 ±0.003   0.00636173 2765 2959           0.005 0.113 0.003 0.107 10     1100 700 15.12 16.02 16.61 16.92 6781 8582 10182 11209 63
0.095 ±0.003   0.00708822 2482 2647           0.005 0.119 0.003 0.113 15     1100 700 13.64 14.41 14.93 15.19 6198 7759 9206 10087 69
0.100 ±0.003 ±0.008 0.00785398 2240 2381 2647 0.016 0.156 0.009 0.140 0.005 0.125 0.003 0.118 15 3500 2000 1100 700 12.29 12.97 13.49 13.74 5569 6940 8365 9206 75
0.106 ±0.003 ±0.008 0.00882473 1994 2111 2332 0.016 0.162 0.009 0.146 0.005 0.131 0.003 0.124 15 3500 2000 1100 700 11.04 11.61 12.05 12.25 5133 6337 7572 8294 83
0.110 ±0.003 ±0.008 0.00950332 1851 1957 2153 0.016 0.166 0.009 0.150 0.005 0.135 0.003 0.128 15 3500 2000 1100 700 10.31 10.82 11.21 11.39 4869 5977 7104 7759 88
0.112 ±0.003 ±0.008 0.00985203 1786 1885 2071 0.017 0.172 0.010 0.154 0.006 0.138 0.004 0.130 15 3750 2200 1300 700 9.873 10.39 10.78 10.97 4568 5647 6729 7391 91
0.120 ±0.003 ±0.008 0.0113097 1556 1636 1786 0.017 0.180 0.010 0.162 0.006 0.147 0.004 0.139 15 3750 2200 1300 850 8.689 9.110 9.409 9.563 4141 5065 5934 6480 102
0.125 ±0.003 ±0.008 0.0122718 1434 1505 1636 0.017 0.185 0.010 0.167 0.006 0.152 0.004 0.144 15 3750 2200 1300 850 8.054 8.426 8.690 8.826 3904 4745 5531 6020 110
0.130 ±0.003 ±0.008 0.0132732 1325 1389 1505 0.017 0.190 0.010 0.172 0.006 0.157 0.004 0.149 15 3750 2200 1300 850 7.485 7.815 8.050 8.171 3686 4455 5167 5608 118
0.140 ±0.003 ±0.008 0.0153938 1143 1193 1286 0.017 0.200 0.010 0.182 0.006 0.167 0.004 0.159 15 3750 2200 1300 850 6.514 6.778 6.965 7.062 3302 3949 4539 4901 133
0.150 ±0.003 ±0.008 0.0176715 995.6 1037 1111 0.017 0.210 0.010 0.192 0.006 0.177 0.004 0.169 15 3750 2200 1300 850 5.719 5.934 6.086 6.164 2976 3525 4020 4320 150
0.160 ±0.003 ±0.008 0.0201062 875.0 908.8 969.5 0.018 0.222 0.011 0.204 0.007 0.189 0.005 0.181 15 3750 2200 1300 850 5.039 5.216 5.341 5.406 2644 3100 3506 3749 168
0.170 ±0.003 ±0.008 0.0226980 775.1 803.2 853.5 0.018 0.232 0.011 0.214 0.007 0.199 0.005 0.191 15 3750 2200 1300 850 4.492 4.639 4.744 4.797 2408 2802 3149 3356 186
0.180 ±0.003 ±0.008 0.0254469 691.4 715.0 757.2 0.019 0.246 0.012 0.226 0.008 0.211 0.005 0.202 15 3800 2400 1600 1000 4.006 4.138 4.226 4.282 2146 2498 2789 3006 206
0.190 ±0.003 ±0.008 0.0283529 620.5 640.6 676.2 0.019 0.256 0.012 0.236 0.008 0.221 0.005 0.212 15 3800 2400 1600 1000 3.615 3.726 3.801 3.849 1972 2281 2534 2721 226
0.200 ±>0.003 ±0.008 0.0314159 560.0 577.2 607.6 0.019 0.266 0.012 0.246 0.008 0.231 0.005 0.222 15 3800 2400 1600 1000 3.278 3.373 3.437 3.478 1819 2091 2312 2475 247
0.210 ±0.003 ±0.008 0.0346361 507.9 522.8 549.0 0.019 0.276 0.012 0.256 0.008 0.241 0.005 0.232 15 3800 2400 1600 1000 2.986 3.068 3.123 3.159 1682 1924 2118 2261 269
0.220 ±0.004 ±0.008 0.0380133 462.8 480.1 498.4 0.019 0.286 0.012 0.266 0.008 0.252 0.005 0.243 15 3800 2400 1600 1000 2.731 2.802 2.848 2.879 1561 1776 1940 2065 291
0.230 ±0.004 ±0.008 0.0415476 423.4 438.6 454.5 0.020 0.298 0.013 0.278 0.009 0.264 0.006 0.255 15 3800 2400 1600 1000 2.500 2.563 2.603 2.630 1432 1620 1762 1870 315
0.240 ±0.004 ±0.008 0.0452389 388.9 402.2 416.2 0.020 0.308 0.013 0.288 0.009 0.274 0.006 0.265 15 3800 2400 1600 1000 2.304 2.359 2.394 2.418 1336 1505 1632 1728 340
0.250 ±0.004 ±0.008 0.0490874 358.4 370.2 382.5 0.020 0.318 0.013 0.298 0.009 0.284 0.006 0.275 15 3800 2400 1600 1000 2.129 2.178 2.209 2.230 1250 1402 1516 1602 366
0.260 ±0.004 ±0.010 0.0530929 331.4 341.8 358.4 0.020 0.330 0.013 0.310 0.009 0.294 0.006 0.285 15 3800 2400 1600 1000 1.972 2.015 2.045 2.064 1164 1300 1412 1489 392
0.270 ±0.004 ±0.010 0.0572555 307.3 316.6 331.4 0.020 0.340 0.013 0.320 0.009 0.304 0.006 0.295 15 3800 2400 1600 1000 1.833 1.872 1.899 1.915 1093 1217 1318 1387 419
0.280 ±0.004 ±0.010 0.0615752 285.7 294.1 307.3 0.020 0.350 0.013 0.330 0.009 0.314 0.006 0.305 15 3800 2400 1600 1000 1.709 1.743 1.767 1.782 1029 1142 1233 1296 448
0.290 ±0.004 ±0.010 0.0660520 266.4 273.9 285.7 0.020 0.360 0.013 0.340 0.009 0.324 0.006 0.315 20 3800 2400 1600 1000 1.597 1.628 1.649 1.663 970 1073 1156 1213 476
0.300 ±0.005 ±0.010 0.0706858 245.6 254.0 262.9 0.021 0.374 0.014 0.352 0.010 0.337 0.007 0.327 20 4200 2800 2000 1400 1.490 1.520 1.539 1.552 901 999 1070 1124 507
0.320 ±0.005 ±0.010 0.0804248 215.9 222.8 230.0 0.021 0.394 0.014 0.372 0.010 0.357 0.007 0.347 20 4200 2800 2000 1400 1.315 1.339 1.355 1.365 808 891 951 996 568
0.350 ±0.005 ±0.010 0.0962113 180.5 185.7 191.2 0.021 0.424 0.014 0.402 0.010 0.387 0.007 0.377 20 4200 2800 2000 1400 1.105 1.123 1.135 1.143 694 759 806 841 668
0.370 ±0.005 ±0.010 0.107521 161.5 165.9 170.6 0.022 0.446 0.014 0.424 0.010 0.407 0.007 0.397 20 4200 2800 2000 1400 0.9898 1.006 1.017 1.024 625 684 727 757 740
0.400 ±0.005 ±0.010 0.125664 138.2 141.7 145.3 0.023 0.480 0.015 0.456 0.011 0.439 0.007 0.429 20 4200 2800 2000 1400 0.8482 0.8620 0.8706 0.8767 539 588 623 650 854
0.425 ±0.006 ±0.010 0.141863 122.4 125.9 128.4 0.024 0.507 0.016 0.483 0.011 0.465 0.007 0.454 20 4200 2800 2000 1400 0.7525 0.7640 0.7720 0.7774 481 523 555 579 954
0.450 ±0.006 ±0.010 0.159043 109.2 112.1 114.2 0.024 0.532 0.016 0.508 0.011 0.490 0.007 0.479 20 4200 2800 2000 1400 0.6730 0.6827 0.6895 0.6940 435 471 499 519 1060
0.475 ±0.006 ±0.010 0.177205 97.30 99.80 101.5 0.025 0.560 0.017 0.535 0.012 0.517 0.008 0.506 20 4500 2050 2150 1400 0.6045 0.6130 0.6187 0.6225 392 424 447 465 1170
0.500 ±0.006 ±0.010 0.196350 87.81 89.95 91.43 0.025 0.586 0.017 0.560 0.012 0.542 0.008 0.531 20 4500 3050 2150 1450 0.5467 0.5541 0.5590 0.5623 358 386 407 421 1287

* The Tolerances refer to Class 2 and 3 only.

** Diameters ≤ 0.050 mm measured using cylinder method, diameters > 0.050 mm measured using twist method.

Goto Download printversion

America MW1000C (inch)

Technical Data acc. to NEMA MW1000C (inch)

All dimensional tolerances based on NEMA MW1000 Revision 1997
Conductor (Bare Wire) Enamelled Copper Wire (overall diameter) Resistance at 20°C min. breakdown Voltage Cylinder Method Length of 1 pound of wire Filling Factor of enamelled wires
Diameter Section Area Single Build Heavy Build Triple Build Nom. Min. Max. Min. Elong Single Heavy Triple Single Heavy Triple Single Heavy Triple max winding tension
AWG min. [inches] nom. [inches] max. [inches] [in2 x 10-6 ] min. [inches] nom. [inches] max. [inches] min. [inches] nom. [inches] max. [inches] min. [inches] nom. [inches] max. [inches] [ohms/1000 ft or ohm/foot]* [%] [V] [V] [V] approx. [feet] approx. [feet] approx. [feet] [wires/in2] [wires/in2] [wires/in2] [grams]
24.0 0.01990 0.02010 0.02020 317.3 0.02090 0.02130 0.02170 0.02180 0.02230 0.02270 0.02280 0.02330 0.02380 25.55 24.91 26.19 28.0 1350 2430 3250 808.3 795.6 782.7 2,545 2,322 2,127 1438
24.5 0.01880 0.01900 0.01910 283.5 0.01980 0.02020 0.02060 0.02070 0.02110 0.02150 0.02170 0.02216 0.02260 28.60 27.86 29.34 28.0 1340 2400 3210 903.6 890.1 873.9 2,830 2,594 2,352 1288
25.0 0.01770 0.01790 0.01800 251.6 0.01860 0.01900 0.01940 0.01950 0.01990 0.02030 0.02040 0.02090 0.02140 32.24 31.37 33.10 28.0 1320 2370 3170 1,019 1,002 984 3,199 2,916 2,644 1143
25.5 0.01670 0.01690 0.01700 224.3 0.01760 0.01800 0.01840 0.01850 0.01890 0.01930 0.01940 0.01990 0.02040 36.18 35.17 37.19 27.5 1300 2340 3130 1,141 1,122 1,100 3,564 3,233 2,916 1016
26.0 0.01570 0.01590 0.01600 198.6 0.01660 0.01700 0.01730 0.01740 0.01780 0.01820 0.01830 0.01880 0.01930 40.89 39.71 42.07 27.0 1290 2310 3090 1,288 1,267 1,241 3,996 3,645 3,267 903
26.5 0.01490 0.01500 0.01510 176.7 0.01570 0.01610 0.01650 0.01650 0.01690 0.01730 0.01740 0.01787 0.01830 45.65 44.58 46.71 27.0 1270 2280 3040 1,445 1,421 1,390 4,455 4,043 3,616 803
27.0 0.01410 0.01420 0.01430 158.4 0.01490 0.01530 0.01560 0.01570 0.01610 0.01640 0.01650 0.01690 0.01730 50.94 49.71 52.17 27.0 1250 2250 3010 1,610 1,582 1,552 4,933 4,455 4,043 717
27.5 0.01330 0.01340 0.01350 141.0 0.01410 0.01450 0.01480 0.01490 0.01520 0.01560 0.01570 0.01608 0.01650 57.20 55.78 58.63 26.5 1240 2220 2970 1,806 1,776 1,737 5,493 4,998 4,466 640
28.0 0.01250 0.01260 0.01270 124.7 0.01330 0.01370 0.01400 0.01410 0.01440 0.01470 0.01480 0.01520 0.01560 64.70 63.02 66.37 26.0 1220 2190 2930 2,039 2,003 1,961 6,153 5,569 4,998 567
28.5 0.01180 0.01190 0.01200 111.2 0.01260 0.01300 0.01330 0.01340 0.01370 0.01400 0.01410 0.01450 0.01490 72.54 70.59 74.48 26.0 1200 2160 2890 2,282 2,239 2,189 6,833 6,153 5,493 503
29.0 0.01120 0.01130 0.01140 100.3 0.01190 0.01230 0.01260 0.01270 0.01300 0.01330 0.01340 0.01380 0.01420 80.45 78.22 82.68 26.0 1190 2140 2850 2,534 2,484 2,425 7,633 6,833 6,064 454
29.5 0.01050 0.01060 0.01070 88.25 0.01120 0.01160 0.01190 0.01200 0.01230 0.01260 0.01270 0.01310 0.01350 91.43 88.79 94.07 25.5 1170 2110 2810 2,875 2,813 2,742 8,582 7,633 6,729 399
30.0 0.00990 0.01000 0.01010 78.54 0.01060 0.01090 0.01120 0.01130 0.01160 0.01190 0.01200 0.01240 0.01280 102.70 99.65 105.80 25.0 1190 2110 2820 3,234 3,162 3,077 9,720 8,582 7,511 358
30.5 0.00940 0.00950 0.00960 70.88 0.01010 0.01040 0.01060 0.01080 0.01110 0.01140 0.01150 0.01180 0.01210 113.80 110.30 117.40 24.5 1190 2110 2820 3,578 3,493 3,407 10,677 9,373 8,294 322
31.0 0.00880 0.00890 0.00900 62.21 0.00940 0.00970 0.01000 0.01010 0.01050 0.01080 0.01050 0.01095 0.01140 129.70 125.50 133.90 24.0 1020 1950 2540 4,084 3,965 3,898 12,274 10,475 9,631 282
31.5 0.00830 0.00840 0.00850 55.42 0.00890 0.00920 0.00960 0.00960 0.01000 0.01030 0.01000 0.01043 0.01090 145.60 140.70 150.50 24.0 1020 1950 2540 4,576 4,435 4,358 13,644 11,548 10,616 251
32.0 0.00790 0.00800 0.00810 50.27 0.00850 0.00880 0.00910 0.00910 0.00950 0.00980 0.00950 0.00990 0.01030 160.60 154.90 166.20 24.0 1020 1790 2400 5,038 4,895 4,812 14,913 12,796 11,783 228
32.5 0.00740 0.00750 0.00760 44.18 0.00800 0.00830 0.00860 0.00860 0.00900 0.00930 0.00900 0.00938 0.00980 182.70 176.00 189.40 23.5 1020 1790 2400 5,720 5,546 5,450 16,763 14,257 13,125 200
33.0 0.00700 0.00710 0.00720 39.59 0.00750 0.00780 0.00810 0.00810 0.00850 0.00880 0.00840 0.00880 0.00920 203.90 196.10 211.70 23.0 850 1620 2120 6,399 6,194 6,105 18,981 15,984 14,913 180
33.5 0.00660 0.00670 0.00680 35.26 0.00710 0.00740 0.00770 0.00770 0.00800 0.00830 0.00800 0.00835 0.00870 229.00 219.80 238.10 22.5 850 1620 2120 7,172 6,963 6,840 21,089 18,044 16,563 160
34.0 0.00620 0.00630 0.00640 31.17 0.00670 0.00700 0.00720 0.00720 0.00750 0.00780 0.00750 0.00785 0.00820 259.00 248.20 269.80 22.0 850 1460 1980 8,094 7,885 7,736 23,568 20,530 18,740 142
34.5 0.00580 0.00590 0.00600 27.34 0.00630 0.00660 0.00680 0.00680 0.00710 0.00740 0.00710 0.00745 0.00780 295.30 282.40 308.30 21.5 850 1460 1980 9,206 8,951 8,770 26,511 22,909 20,807 124
35.0 0.00550 0.00560 0.00570 24.63 0.00590 0.00620 0.00640 0.00640 0.00670 0.00700 0.00670 0.00705 0.00740 327.90 312.90 342.80 21.0 680 1460 1830 10,257 9,959 9,747 30,042 25,726 23,235 112
35.5 0.00520 0.00530 0.00540 22.06 0.00560 0.00590 0.00610 0.00610 0.00640 0.00670 0.00640 0.00673 0.00710 366.10 348.60 383.50 20.5 680 1460 1830 11,429 11,077 10,841 33,175 28,194 25,497 100
36.0 0.00490 0.00500 0.00510 19.635 0.00530 0.00560 0.00580 0.00570 0.00600 0.00630 0.00600 0.00635 0.00670 411.40 390.80 431.90 20.0 680 1300 1690 12,813 12,478 12,180 36,825 32,079 28,640 89
36.5 0.00460 0.00470 0.00480 17.349 0.00500 0.00530 0.00550 0.00540 0.00570 0.00600 0.00570 0.00603 0.00640 465.70 441.20 490.10 20.0 680 1300 1690 14,465 14,060 13,722 41,112 35,544 31,760 78
37.0 0.00440 0.00450 0.00460 15.904 0.00470 0.00500 0.00520 0.00520 0.00550 0.00570 0.00540 0.00570 0.00600 508.00 480.40 535.70 20.0 680 1140 1550 15,865 15,288 15,055 46,193 38,176 35,544 72
37.5 0.00410 0.00420 0.00430 13.854 0.00440 0.00470 0.00500 0.00490 0.00520 0.00540 0.00510 0.00540 0.00570 583.40 549.80 617.00 19.5 680 1140 1550 18,165 17,455 17,167 52,278 42,708 39,603 63
38.0 0.00390 0.00400 0.00410 12.566 0.00420 0.00450 0.00470 0.00460 0.00490 0.00510 0.00480 0.00510 0.00540 643.30 604.70 681.90 19.0 500 950 1400 19,989 19,331 18,998 57,029 48,098 44,399 57
38.5 0.00360 0.00370 0.00380 10.752 0.00390 0.00420 0.00440 0.00430 0.00460 0.00480 0.00450 0.00480 0.00510 752.10 703.90 800.20 18.5 500 950 1400 23,284 22,451 22,030 65,466 54,576 50,123 49
39.0 0.00340 0.00350 0.00360 9.6211 0.00360 0.00390 0.00410 0.00400 0.00430 0.00450 0.00420 0.00450 0.00480 840.70 784.30 897.10 18.0 500 900 1300 26,198 25,217 24,720 75,926 62,457 57,029 44
39.5 0.00320 0.00330 0.00340 8.5530 0.00340 0.00370 0.00390 0.00380 0.00400 0.00430 0.00400 0.00428 0.00460 946.10 879.30 1013.00 17.5 500 900 1300 29,404 28,527 27,697 84,356 72,177 63,042 39
40.0 0.00300 0.00310 0.00320 7.5477 0.00320 0.00350 0.00370 0.00360 0.00380 0.00400 0.00380 0.00405 0.00430 1073.00 992.70 1152.00 17.0 425 850 1200 33,236 32,175 31,281 94,272 79,974 70,406 34
40.5 0.00290 0.00300 0.00310 7.0686 0.00310 0.00330 0.00350 0.00350 0.00370 0.00380 0.00370 0.00390 0.00410 1145.00 1058.00 1233.00 17.0 425 850 1200 35,824 34,267 33,478 106,045 84,356 75,926 32
41.0 0.00270 0.00280 0.00290 6.1575 0.00290 0.00310 0.00330 0.00320 0.00340 0.00360 0.00340 0.00365 0.00390 1316.00 1209.00 1423.00 17.0 425 700 1100 41,030 39,595 38,382 120,169 99,899 86,683 28
41.5 0.00250 0.00260 0.00270 5.3093 0.00270 0.00290 0.00320 0.00300 0.00320 0.00340 0.00320 0.00345 0.00370 1527.00 1394.00 1659.00 16.5 425 700 1100 47,458 45,662 44,145 137,316 112,776 97,024 24
42.0 0.00240 0.00250 0.00260 4.9087 0.00260 0.00280 0.00300 0.00280 0.00300 0.00320 0.00310 0.00330 0.00350 1652.00 1504.00 1801.00 16.0 375 700 990 51,254 49,910 47,865 147,300 128,314 106,045 22
42.5 0.00230 0.00240 0.00250 4.5239 0.00250 0.00270 0.00280 0.00270 0.00290 0.00310 0.00300 0.00318 0.00340 1793.00 1626.00 1960.00 15.5 375 700 990 55,524 54,003 51,844 158,413 137,316 114,199 21
43.0 0.00210 0.00220 0.00230 3.8013 0.00230 0.00250 0.00260 0.00250 0.00270 0.00290 0.00270 0.00295 0.00320 2137.00 1922.00 2352.00 15.0 325 650 845 65,833 63,853 61,347 184,773 158,413 132,701 17
43.5 0.00200 0.00210 0.00220 3.4636 0.00220 0.00240 0.00250 0.00240 0.00260 0.00280 0.00260 0.00283 0.00310 2346.00 2100.00 2593.00 14.5 325 650 845 72,098 69,818 67,166 200,491 170,833 144,193 17
44.0 0.00190 0.00200 0.00210 3.1416 0.00210 0.00230 0.00240 0.00230 0.00250 0.00270 0.00250 0.00270 0.00290 2589.00 2305.00 2873.00 14.0 300 600 845 79,301 76,658 73,987 218,304 184,773 158,413 14
44.5 0.00180 0.00190 0.00200 2.8353 0.00197 0.00210 0.00220 0.00220 0.00233 0.00250 0.00237 0.00255 0.00273 2871.00 2541.00 3201.00 12.5 300 600 845 89,160 85,637 82,214 261,866 212,719 177,598 14
45.0 0.00169 0.00176 0.00183 2.4328 0.00179 0.00192 0.00205 0.00199 0.00215 0.00230 0.00224 0.00240 0.00255 3.348 3.080 3.616 11.0 275 550 760 104,389 99,965 95,069 313,267 249,828 200,491 11
45.5 0.00160 0.00166 0.00173 2.1642 0.00171 0.00183 0.00195 0.00191 0.00206 0.00220 0.00216 0.00231 0.00245 3.757 3.472 4.099 10.5 275 550 760 116,913 111,625 105,783 344,838 272,134 216,418 11
46.0 0.00151 0.00157 0.00164 1.9359 0.00161 0.00173 0.00185 0.00181 0.00196 0.00210 0.00206 0.00221 0.00235 4.207 3.870 4.544 10.0 250 475 690 130,722 124,468 117,560 385,856 300,611 236,446 8.8
46.5 0.00142 0.00148 0.00154 1.7203 0.00153 0.00165 0.00178 0.00173 0.00186 0.00200 0.00198 0.00210 0.00223 4.733 4.377 5.134 9.0 250 475 - 146,490 139,661 131,742 424,179 333,804 261,866 8.8
47.0 0.00135 0.00140 0.00146 1.5394 0.00145 0.00157 0.00170 0.00165 0.00177 0.00190 0.00185 0.00197 0.00210 5.291 4.868 5.714 8.0 225 425 - 163,361 155,668 147,871 468,509 368,613 297,567 7.0
47.5 0.00127 0.00132 0.00137 1.3685 0.00137 0.00148 0.00160 0.00157 0.00168 0.00180 0.00177 0.00188 0.00200 5.962 5.525 6.453 8.0 225 425 - 183,776 174,593 165,288 527,223 409,165 326,740 7.0
48.0 0.00119 0.00124 0.00129 1.2076 0.00129 0.00140 0.00150 0.00139 0.00155 0.00170 0.00159 0.00175 0.00190 6.745 6.205 7.285 8.0 190 375 - 207,724 199,422 188,205 589,198 480,678 377,087 5.5
48.5 0.00113 0.00117 0.00122 1.0751 0.00122 0.00131 0.00140 0.00132 0.00146 0.00160 0.00147 0.00164 0.00180 7.585 7.008 8.123 7.5 190 375 - 234,037 224,165 212,148 672,938 541,766 429,368 5.5
49.0 0.00107 0.00111 0.00116 0.9677 0.00117 0.00124 0.00130 0.00127 0.00139 0.00150 0.00142 0.00156 0.00170 8.417 7.744 9.090 7.0 170 325 - 260,236 248,675 235,381 751,059 597,706 474,535 4.4
49.5 0.00101 0.00105 0.00109 0.8659 0.00110 0.00117 0.00125 0.00120 0.00132 0.00145 0.00135 0.00150 0.00165 9.386 8.720 10.371 7.0 170 325 - 291,094 277,434 260,802 843,618 662,780 513,257 4.4
50.0 0.00095 0.00099 0.00103 0.7698 0.00105 0.00113 0.00120 0.00115 0.00128 0.00140 0.00125 0.00143 0.00160 10.580 9.734 11.430 7.0 150 300 - 324,561 308,186 291,640 904,400 704,851 564,736 3.5
51.0 0.00085 0.00088 0.00092 0.6082 0.00095 0.00103 0.00110 0.00105 0.00118 0.00130 0.00115 0.00133 0.00150 13.390 12.320 14.460 6.0 130 275 - 406,838 383,420 359,893 1,088,536 829,380 652,851 2.8
52.0 0.00075 0.00078 0.00081 0.4778 0.00085 0.00093 0.00100 0.00095 0.00105 0.00115 0.00105 0.00123 0.00140 17.050 15.690 18.410 6.0 120 250 - 514,055 487,112 446,674 1,335,216 1,047,463 763,321 2.2
53.0 0.00067 0.00070 0.00073 0.3848 0.00072 0.00079 0.00085 0.00077 0.00090 0.00103 - - - 21.170 19.480 22.860 5.0 110 225 - 651,926 618,008 - 1,850,390 1,425,714 - 1.7
54.0 0.00060 0.00062 0.00065 0.3019 0.00065 0.00070 0.00075 0.00070 0.00083 0.00095 - - - 26.980 24.820 29.140 - 100 200 - 830,894 773,039 - 2,356,792 1,676,337 - 1.4
55.0 0.00053 0.00055 0.00057 0.2376 0.00058 0.00064 0.00070 0.00063 0.00075 0.00087 - - - 34.280 31.540 37.020 - 100 200 - 1,043,875 973,510 - 2,819,405 2,053,028 - 1.1
56.0 0.00047 0.00049 0.00051 0.1886 0.00052 0.00059 0.00065 0.00057 0.00069 0.00081 - - - 43.190 39.730 46.650 - 90 175 - 1,297,403 1,206,656 - 3,317,519 2,425,600 - 0.9
57.0 0.00042 0.00044 0.00046 0.1521 0.00047 0.00051 0.00056 - - - - - - 54.060 49.735 58.385 - - - - 1,633,521 - 4,439,940 - - -
58.0 0.00038 0.00039 0.00041 0.1195 0.00043 0.00047 0.00051 - - - - - - 68.011 62.570 73.452 - - - - 2,047,309 - 5,227,833 - - -

* AWG 24-44.5 the unit of measure is ohms/1000 foot. AWG 45-58 the unit of measure is ohms/foot.

America MW1000C (metric)

Technical Data acc. to NEMA MW1000C (metric)

All dimensional tolerances based upon NEMA MW1000 Revision 1997
Conductor (Bare Wire) Enamelled Copper Wire (overall diameter) Resistance at 20°C min. breakdown Voltage Cylinder Method Length of 1 Kg approx. Filling Factor of enamelled wires
Diameter Section nom Single Build Heavy Build Triple Build Nom. Min. Max. Min. Elong. Single Heavy Triple Single Heavy Triple Single Heavy Triple max winding tension
AWG min. [mm] nom. [mm] max. [mm] [mm2] min. [mm] nom. [mm] max. [mm] min. [mm] nom. [mm] max. [mm] min. [mm] nom. [mm] max. [mm] [ohm/m] [ohm/m] [ohm/m] [%] [V] [V] [V] approx. [km] approx. [km] approx. [km] [wires/cm2] [wires/cm2] [wires/cm2] [grams]
24.0 0.5050 0.5110 0.5130 0.205084 0.5310 0.5410 0.5510 0.5540 0.5650 0.5770 0.5790 0.5920 0.6050 0.0838 0.0818 0.0859 28.0 1350 2430 3250 0.536 0.529 0.520 395 362 330 1,438
24.5 0.4780 0.4830 0.4850 0.183225 0.5030 0.5130 0.5220 0.5260 0.5360 0.5460 0.5520 0.5630 0.5740 0.0939 0.0914 0.0963 28.0 1340 2400 3210 0.600 0.591 0.580 439 402 364 1,288
25.0 0.4500 0.4550 0.4570 0.162597 0.4720 0.4830 0.4930 0.4950 0.5050 0.5160 0.5180 0.5310 0.5440 0.1058 0.1030 0.1086 28.0 1320 2370 3170 0.676 0.666 0.653 495 453 410 1,143
25.5 0.4240 0.4290 0.4320 0.144545 0.4480 0.4570 0.4660 0.4710 0.4800 0.4890 0.4940 0.5050 0.5170 0.1187 0.1154 0.1220 27.5 1300 2340 3130 0.759 0.747 0.733 553 501 453 1,016
26.0 0.3990 0.4040 0.4060 0.128190 0.4220 0.4310 0.4390 0.4420 0.4520 0.4620 0.4650 0.4780 0.4900 0.1342 0.1303 0.1380 27.0 1290 2310 3090 0.856 0.842 0.824 622 565 505 903
26.5 0.3780 0.3810 0.3840 0.114009 0.4000 0.4090 0.4180 0.4200 0.4300 0.4390 0.4430 0.4540 0.4650 0.1498 0.1463 0.1533 27.0 1270 2280 3040 0.960 0.944 0.924 690 625 560 803
27.0 0.3580 0.3610 0.3630 0.102354 0.3780 0.3870 0.3960 0.3990 0.4080 0.4170 0.4190 0.4290 0.4390 0.1671 0.1631 0.1711 27.0 1250 2250 3010 1.070 1.051 1.031 771 694 627 717
27.5 0.3380 0.3400 0.3430 0.090792 0.3580 0.3670 0.3760 0.3780 0.3870 0.3950 0.3990 0.4080 0.4180 0.1877 0.1830 0.1924 26.5 1240 2220 2970 1.204 1.181 1.158 857 771 694 640
28.0 0.3180 0.3200 0.3230 0.080425 0.3380 0.3470 0.3560 0.3580 0.3660 0.3730 0.3760 0.3860 0.3960 0.2123 0.2068 0.2178 26.0 1220 2190 2930 1.357 1.331 1.304 959 862 775 567
28.5 0.3000 0.3020 0.3050 0.071631 0.3200 0.3290 0.3380 0.3400 0.3480 0.3560 0.3580 0.3680 0.3780 0.2380 0.2317 0.2444 26.0 1200 2160 2890 1.521 1.491 1.458 1067 954 853 503
29.0 0.2840 0.2870 0.2900 0.064692 0.3020 0.3110 0.3200 0.3230 0.3300 0.3380 0.3400 0.3510 0.3610 0.2640 0.2567 0.2712 26.0 1190 2140 2850 1.687 1.652 1.612 1194 1060 937 454
29.5 0.2670 0.2690 0.2720 0.056832 0.2840 0.2930 0.3020 0.3050 0.3120 0.3200 0.3230 0.3330 0.3430 0.3000 0.2914 0.3086 25.5 1170 2110 2810 1.917 1.874 1.826 1345 1186 1041 399
30.0 0.2510 0.2540 0.2570 0.050671 0.2690 0.2770 0.2840 0.2870 0.2950 0.3020 0.3050 0.3150 0.3250 0.3371 0.3270 0.3472 25.0 1190 2110 2820 2.149 2.101 2.046 1505 1327 1164 358
30.5 0.2390 0.2410 0.2440 0.045617 0.2570 0.2630 0.2690 0.2740 0.2810 0.2880 0.2920 0.3000 0.3070 0.3735 0.3620 0.3851 24.5 1190 2110 2820 2.387 2.330 2.269 1670 1463 1283 322
31.0 0.2240 0.2260 0.2290 0.040115 0.2390 0.2460 0.2540 0.2570 0.2650 0.2740 0.2670 0.2780 0.2900 0.4256 0.4118 0.4394 24.0 1020 1950 2540 2.717 2.644 2.593 1908 1644 1494 282
31.5 0.2110 0.2130 0.2160 0.035633 0.2260 0.2340 0.2430 0.2440 0.2530 0.2620 0.2540 0.2650 0.2760 0.4778 0.4617 0.4939 24.0 1020 1950 2540 3.049 2.961 2.906 2109 1804 1644 251
32.0 0.2010 0.2030 0.2060 0.032365 0.2160 0.2240 0.2310 0.2310 0.2400 0.2490 0.2410 0.2510 0.2620 0.5268 0.5084 0.5452 24.0 1020 1790 2400 3.351 3.266 3.207 2302 2005 1833 228
32.5 0.1880 0.1910 0.1930 0.028652 0.2030 0.2110 0.2180 0.2180 0.2270 0.2360 0.2290 0.2380 0.2480 0.5994 0.5775 0.6214 23.5 1020 1790 2400 3.784 3.682 3.611 2594 2241 2039 200
33.0 0.1780 0.1800 0.1830 0.025447 0.1910 0.1980 0.2060 0.2060 0.2150 0.2240 0.2130 0.2240 0.2340 0.6689 0.6435 0.6944 23.0 850 1620 2120 4.267 4.138 4.068 2946 2498 2302 180
33.5 0.1680 0.1700 0.1730 0.022698 0.1800 0.1870 0.1940 0.1960 0.2030 0.2110 0.2030 0.2120 0.2210 0.7513 0.7214 0.7811 22.5 850 1620 2120 4.784 4.639 4.557 3302 2802 2569 160
34.0 0.1570 0.1600 0.1630 0.020106 0.1700 0.1770 0.1830 0.1830 0.1910 0.1980 0.1910 0.1990 0.2080 0.8498 0.8144 0.8852 22.0 850 1460 1980 5.390 5.238 5.150 3686 3166 2916 142
34.5 0.1470 0.1500 0.1520 0.017671 0.1600 0.1660 0.1730 0.1730 0.1800 0.1880 0.1800 0.1890 0.1980 0.9690 0.9266 1.0110 21.5 850 1460 1980 6.132 5.947 5.827 4191 3564 3233 124
35.0 0.1400 0.1420 0.1450 0.015837 0.1500 0.1560 0.1630 0.1630 0.1700 0.1780 0.1700 0.1790 0.1880 1.0760 1.0270 1.1250 21.0 680 1460 1830 6.860 6.642 6.501 4745 3996 3604 112
35.5 0.1320 0.1350 0.1370 0.014314 0.1420 0.1490 0.1550 0.1550 0.1620 0.1690 0.1630 0.1710 0.1790 1.2010 1.1440 1.2580 20.5 680 1460 1830 7.577 7.342 7.177 5202 4400 3949 100
36.0 0.1240 0.1270 0.1300 0.012668 0.1350 0.1410 0.1470 0.1450 0.1520 0.1600 0.1520 0.1610 0.1700 1.3500 1.2830 1.4170 20.0 680 1300 1690 8.544 8.305 8.107 5809 4998 4455 89
36.5 0.1170 0.1190 0.1220 0.011122 0.1270 0.1330 0.1400 0.1370 0.1450 0.1520 0.1450 0.1530 0.1610 1.5280 1.4480 1.6080 20.0 680 1300 1690 9.708 9.391 9.176 6529 5493 4933 78
37.0 0.1120 0.1140 0.1170 0.010207 0.1190 0.1260 0.1320 0.1320 0.1380 0.1450 0.1370 0.1450 0.1520 1.6670 1.5760 1.7580 20.0 680 1140 1550 10.62 10.26 10.05 7274 6064 5493 72
37.5 0.1040 0.1070 0.1090 0.0089920 0.1120 0.1190 0.1260 0.1240 0.1310 0.1370 0.1300 0.1370 0.1450 1.9140 1.8040 2.0240 19.5 680 1140 1550 12.03 11.59 11.37 8155 6729 6153 63
38.0 0.0990 0.1020 0.1040 0.0081713 0.1070 0.1130 0.1190 0.1170 0.1230 0.1300 0.1220 0.1300 0.1370 2.1110 1.9840 2.2370 19.0 500 950 1400 13.26 12.84 12.54 9044 7633 6833 57
38.5 0.0910 0.0940 0.0970 0.0069398 0.0990 0.1050 0.1120 0.1090 0.1160 0.1220 0.1140 0.1220 0.1300 2.4680 2.3100 2.6250 18.5 500 950 1400 15.56 14.97 14.64 10475 8582 7759 49
39.0 0.0860 0.0890 0.0910 0.0062211 0.0910 0.0980 0.1040 0.1020 0.1080 0.1140 0.1070 0.1140 0.1220 2.7590 2.5740 2.9430 18.0 500 900 1300 17.45 16.82 16.43 12024 9901 8886 44
39.5 0.0810 0.0840 0.0860 0.0055418 0.0860 0.0930 0.0990 0.0970 0.1020 0.1080 0.1020 0.1090 0.1160 3.1040 2.8860 3.3230 17.5 500 900 1300 19.55 18.87 18.34 13352 11100 9720 39
40.0 0.0760 0.0790 0.0810 0.0049017 0.0810 0.0880 0.0940 0.0910 0.0970 0.1020 0.0970 0.1030 0.1090 3.5190 3.2580 3.7810 17.0 425 850 1200 22.06 21.24 20.69 14913 12274 10885 34
40.5 0.0740 0.0760 0.0790 0.0045365 0.0790 0.0840 0.0890 0.0890 0.0930 0.0970 0.0940 0.0990 0.1040 3.7590 3.4710 4.0460 17.0 425 850 1200 23.90 22.98 22.36 16367 13352 11783 32
41.0 0.0690 0.0710 0.0740 0.0039592 0.0740 0.0790 0.0840 0.0810 0.0860 0.0910 0.0860 0.0930 0.0990 4.3170 3.9670 4.6670 17.0 425 700 1100 27.32 26.44 25.56 18504 15614 13352 28
41.5 0.0640 0.0660 0.0690 0.0034212 0.0690 0.0740 0.0800 0.0760 0.0810 0.0860 0.0810 0.0880 0.0940 5.0100 4.5760 5.4440 16.5 425 700 1100 31.53 30.44 29.33 21089 17601 14913 24
42.0 0.0610 0.0640 0.0660 0.0032170 0.0660 0.0710 0.0760 0.0710 0.0760 0.0810 0.0790 0.0840 0.0890 5.4210 4.9350 5.9070 16.0 375 700 990 33.66 32.81 31.43 22909 19994 16367 22
42.5 0.0580 0.0610 0.0640 0.0029225 0.0640 0.0670 0.0710 0.0690 0.0730 0.0770 0.0760 0.0810 0.0850 5.8850 5.3370 6.4320 15.5 375 700 990 37.18 36.00 34.41 25726 21671 17601 21
43.0 0.0530 0.0560 0.0580 0.0024630 0.0580 0.0620 0.0660 0.0640 0.0690 0.0740 0.0690 0.0750 0.0810 7.0110 6.3060 7.7160 15.0 325 650 845 43.99 42.21 40.66 30042 24256 20530 17
43.5 0.0510 0.0530 0.0560 0.0022062 0.0560 0.0600 0.0640 0.0610 0.0660 0.0710 0.0660 0.0720 0.0770 7.6990 6.8920 8.5060 14.5 325 650 845 48.72 46.91 45.08 32079 26511 22277 17
44.0 0.0480 0.0510 0.0530 0.0020428 0.0530 0.0570 0.0610 0.0580 0.0640 0.0690 0.0640 0.0690 0.0740 8.4950 7.5640 9.4250 14.0 300 600 845 52.86 50.49 48.78 35544 28194 24256 14
44.5 0.0460 0.0480 0.0510 0.0018096 0.0499 0.0532 0.0565 0.0550 0.0590 0.0640 0.0600 0.0650 0.0690 9.4210 8.3400 10.502 12.5 300 600 845 59.85 57.51 55.05 40803 33175 27333 14
45.0 0.0429 0.0447 0.0464 0.001569296 0.0455 0.0488 0.0521 0.0505 0.0545 0.0584 0.0569 0.0608 0.0648 10.864 10.105 11.864 11.0 275 550 760 69.38 66.54 63.34 48493 38880 31240 11
45.5 0.0406 0.0422 0.0439 0.001398668 0.0435 0.0465 0.0495 0.0486 0.0522 0.0559 0.0549 0.0586 0.0662 12.326 11.391 13.448 10.5 275 550 760 77.59 74.20 70.34 53409 42382 33630 11
46.0 0.0384 0.0399 0.0417 0.001250362 0.0409 0.0439 0.0470 0.0460 0.0497 0.0533 0.0523 0.0560 0.0597 13.802 12.697 14.908 10.0 250 475 690 86.84 82.76 78.26 59922 46752 36825 8.8
46.5 0.0361 0.0376 0.0391 0.001110365 0.0389 0.0420 0.0451 0.0439 0.0474 0.0508 0.0503 0.0534 0.0565 15.528 14.360 16.844 9.0 250 475 - 97.26 92.72 87.59 65466 51400 40498 8.8
47.0 0.0343 0.0356 0.0371 0.000995382 0.0367 0.0400 0.0432 0.0418 0.0450 0.0483 0.0469 0.0501 0.0533 17.359 15.971 18.747 8.0 225 425 - 108.3 103.3 98.20 72177 57029 46009 7.0
47.5 0.0322 0.0335 0.0348 0.000881413 0.0347 0.0377 0.0406 0.0398 0.0428 0.0457 0.0449 0.0479 0.0508 19.560 18.127 21.171 8.0 225 425 - 122.2 116.1 109.9 81252 63042 50332 7.0
48.0 0.0302 0.0315 0.0328 0.000779311 0.0329 0.0355 0.0381 0.0354 0.0393 0.0432 0.0405 0.0444 0.0483 22.129 20.358 23.901 8.0 190 375 - 138.1 132.7 125.3 91635 74771 58580 5.5
48.5 0.0287 0.0297 0.0310 0.000692792 0.0311 0.0333 0.0356 0.0336 0.0371 0.0406 0.0374 0.0416 0.0457 24.885 22.992 26.650 7.5 190 375 - 155.7 149.2 141.4 104143 83901 66731 5.5
49.0 0.0272 0.0282 0.0295 0.000624580 0.0297 0.0314 0.0330 0.0323 0.0352 0.0381 0.0361 0.0396 0.0432 27.615 25.407 29.823 7.0 170 325 - 173.1 165.5 156.6 117127 93203 73642 4.4
49.5 0.0256 0.0267 0.0277 0.000559902 0.0278 0.0298 0.0318 0.0304 0.0336 0.0368 0.0342 0.0380 0.0419 30.794 28.609 34.026 7.0 170 325 - 192.9 184.0 173.5 130042 102291 79974 4.4
50.0 0.0241 0.0251 0.0262 0.000494809 0.0267 0.0286 0.0305 0.0292 0.0324 0.0356 0.0318 0.0362 0.0406 34.711 31.936 37.500 7.0 150 300 - 216.7 205.9 195.0 141184 110009 88125 3.5
51.0 0.0216 0.0224 0.0234 0.000394081 0.0241 0.0260 0.0279 0.0267 0.0298 0.0330 0.0292 0.0337 0.0381 43.930 40.420 47.441 6.0 130 275 - 270.2 254.9 239.2 170833 130042 101685 2.8
52.0 0.0191 0.0198 0.0206 0.000307907 0.0216 0.0235 0.0254 0.0241 0.0267 0.0292 0.0267 0.0311 0.0356 55.938 51.476 60.400 6.0 120 250 - 342.8 324.2 298.5 209113 161992 119398 2.2
53.0 0.0170 0.0178 0.0185 0.000248846 0.0183 0.0199 0.0216 0.0196 0.0229 0.0262 - - - 69.455 63.911 75.000 5.0 110 225 - 433.9 410.0 - 291616 220215 - 1.7
54.0 0.0152 0.0157 0.0165 0.000193593 0.0165 0.0178 0.0191 0.0178 0.0210 0.0241 - - - 88.517 84.430 95.604 - 100 200 - 554.9 517.6 - 364483 261866 - 1.4
55.0 0.0135 0.0140 0.0145 0.000153938 0.0147 0.0163 0.0178 0.0160 0.0191 0.0221 - - - 112.47 103.48 121.46 - 100 200 - 690.9 644.7 - 434653 316556 - 1.1
56.0 0.0119 0.0124 0.0130 0.000120763 0.0132 0.0149 0.0165 0.0145 0.0175 0.0206 - - - 141.70 130.35 153.02 - 90 175 - 869.8 808.0 - 520169 377087 - 0.9
57.0 0.0107 0.0111 0.0116 0.000096769 0.0119 0.0130 0.0141 - - - - - - 177.36 163.17 191.55 - - - - 1,096 - - 683330 - - -
58.0 0.0095 0.0099 0.0103 0.000076977 0.0108 0.0118 0.0129 - - - - - - 223.13 205.28 240.98 - - - - 1,369 - - 829380 - - -

LW Info

History

In the first half of the last century, the range of litz wire usage was consistent with the technology level of the day. For example, in 1923 the first medium frequency radio broadcast was made possible by litz wires in the coils. In the 1940's litz wire was used in the first ultrasonic diagnostic systems and basic RFID systems. In the 1950's litz wire was used in USW chokes. With the explosive growth of new electronic components in the second half of the 20th century, litz wire usage also expanded rapidly.

Elektrisola began supply of high frequency litz wires in 1951 to meet increasing customer demand for innovative quality products. Elektrisola litz wire was quickly incorporated into new developments such as ferrite core chokes for electromagnetic lighting ballasts in the 1960's, as well as magnetic resonance imaging systems developed in the 1970's and 1980's, and high frequency switching power supplies in the 1990's.

Since the beginning, Elektrisola has demonstrated an active partnership with its customers in joint development of new and innovative litz wire solutions. This close customer support continues today with new litz wire applications in the fields of renewable energy, e-mobility, and medical technologies being developed for use in future products.

Terminology

Litz wires consist of multiple rope like bunched single insulated wires and are used in a wide range of applications requiring good flexibility and high frequency performance.


High frequency litz wires are produced using multiple single wires electrically isolated from each other and are typically used in applications operating within a frequency range of 10 kHz to 5 MHz.


In the coils, which are the magnetic energy storage of the application, eddy current losses occur due to the high frequencies. Eddy current losses increase with the frequency of the current. The root of these losses is the skin effect and proximity effect, which can be reduced by using high frequency litz wire. The magnetic field which causes these effects is compen-sated for by the twisted bunching con-struction of the litz wire.

Single Wire

The basic component of a litz wire is the single insulated wire. Conductor material and enamel insulation can be combined in an optimum way to meet the demands of specific applications.


Single Wire

Litz Wire / Bundle Construction

Depending on the number of individual strands, litz wires are produced in one or more steps. Therefore, there are many options for the overall design.


Directly Bunched Litz Wires

A limited number of single wires are directly bunched so each individual wire is freely located. The single wires can take any position within the litz wire cross section.


Directly Bunched Wires

Multi Stage Litz Wires

Depending on the required strand count or performance specification, litz wires can be twisted in several steps. Any numbers of prepared bundles are stranded with each other in several twisting steps. The electrical and mechanical properties of the final product depend upon the designed litz wire construction.


Multi Stage Litz Wire with 3 Bundles
Multi Stage Litz Wire with 5 Bundles


Concentrically Bunched Litz Wires

The individual wires are positioned in one or more layers concentrically around the litz wire center conductor. In this design configuration each single wire naturally moves into its predefined position during the twisting operation resulting in consistent dimensions and working properties. A strain relief filament can be used as the central strand.

Concentric Litz Wire with 7 Single Wires


Concentric Litz Wire with 7 Bundles

Length of Lay

The length of lay describes the distance which a single wire needs for one complete rotation around the litz wire circumference (360 degrees).


Length of Lay

Pitch Direction

The pitch direction indicates the twist or bunching direction of the bundled wire construction. Z-lay is bunched in a clockwise direction while S-lay is the opposite, or counter clockwise twist direction.

Pitch Direction S-Lay and Z-Lay

Litz Wire Types

Elektrisola offers a wide range of high frequency litz wires. Due to the different demands resulting from the broad field of applications there are several types of litz wires available.


Overview Litz Wire Types

The following table shows an overview of the basic product variations and their technical reference values. For direct comparison of features of selected product types click the link below.

Basic Litz Wire

Basic litz wires are bunched in one or several steps. For more stringent requirements, it serves as the base for serving, extruding, or other functional coatings.

Taped Litz Wire

Additional insulation can be added by wrapping a tape around the basic litz wire. Increased dielectric strength, high breakdown voltage, thermal endurance as well as flexibility can be achieved by a suitable combination of taping material, number of tapes, and the degree of overlapping of the tapes.

EFOLIT®

For safety relevant applications demanding explicit certified high dielectric strength our EFOLIT ®- Litz Wire family provides reinforced insulation with at least three layers of tape. Working voltages up to 1414 Vpeak for both temperature classes F/155°C and H/180°C can be supplied. The VDE certification with manufacturing surveillance guarantees an approved and continous high performance  level.

Extruded Litz Wire

Coating litz wires with extruded thermoplastic materials offers additional options for insulating litz wire conductors electrically. Extruded coatings are highly flexible and can also provide additional protection against moisture and chemical exposure.

Profiled Litz Wire

Basic litz wires and some types of served or taped litz wires can be produced with a square or rectangular cross section by a profiling process. The compacted profile provides an optimized copper filling factor for more efficient electrical properties in wound coils.

Litz Wire with Strain Relief

Very small litz wires or litz wires with a high demand for tensile strength or flex life performance can be reinforced with a high tensile mono or multifilament. For best performance those filaments are placed in the center of the litz wire. In some cases, it is sufficient to simply integrate the strain relief filament as a bunched non-conductive element within the litz wire.

Served Litz Wire

Litz wires can be spirally served with different materials such as very fine nylon or natural silk. During the serving process the litz wire is covered by the textile in one or more layers. The dimensional stability, flexibility, and impregnation performance is improved by the serving materials.

Smartbond Litz Wires

Self supporting coils can be produced with automated winding processes using litz wires provided with a 'Smartbond' adhesive. Very thin coils can be produced with Smartbond's unique self adhesive construction providing additional space for designers or to help achieve miniaturization objectives.

Dimensions

Technical Data by Dimensions

For a quick selection of an appropriate litz wire, filters can be applied to all characteristics of litz wire shown in the table underneath.

To simplify your search, you can enter min and max data for all characteristics. For example, you may enter a min and max in one column such as nominal resistance and get litz wire constructions as a result, which meet these criteria.

Other dimensions and constructions are available on request.

All data is based on EN 60317-11.

Design & Calculation

The use of litz wire for different applications is a very complex process, as it has to match best for very different technical problems. In this chapter, some basic considerations to help to design a litz wire are given.

Total Resistance of Litz Wire

The total resistance of a given litz wire construction is determined by the specific resistance of the conductor material, the nominal diameter and number of single wires, the number of bunching steps, the chosen length of lay, and additional process specific influences.


The resistance value of the single wire can be obtained from technical data provided by Elektrisola.



Using the procedure outlined in DIN EN 60317-11 the total resistance of a litz wire can be calculated as follows:


nominal value of resistance of litz wire

with nominal value of resistance of single wire
and number of single wires
and factor of the shortening of length due to bunching process
dependent on number of bunching steps
Minimum value of resistance of litz wire
with minimum value of resistance of single wire
Maximum value of resistance of litz wire for number of single wires up to and including 25
Maximum value of resistance of litz wire for number of single wires above 25
with factor for broken wires

Outer Diameter and Cross Sections of Litz Wire

The nominal outer diameter depends upon the method of twisting (directly, freely bunched or concentrically bunched), number of bunching steps, pitch direction, length of lay, and selected nominal diameter of single wires. The OD is also influenced by process specific factors.


Due to the litz wire’s natural flexibility, bending radius, and winding tension dependent dimensional stability, the nominal outer diameter is approximated by an average value in combination with a defined measuring method.


The nominal outer diameter of a bunched litz wire can be calculated guided by DIN EN 60317-11 with the following formula:

with packing factor kPF, see table below


Packing factor KPF
no. of wires packing factor
3 through 12 1.25
16 1.26
20 1.27
25 through 400 1.28


number of single wires

and nominal value for the outer diameter of the single wire
and increase in diameter by optional outer coating

The copper cross section of litz wire results from the sum of the single wire copper cross sections

with number of single wires
and nominal diameter of bare single wire
The overall cross section of litz wire can be calculated as

with the square of calculated outer diameter of litz wire.


Filling Factors

Litz Wire Filling Factor

The litz wire filling factor is the relation between copper cross section and overall cross section

with product and process specific factor

This factor depends on the choice of nominal single wire diameter, number of bunching steps, length of lay, pitch direction, and the thickness of insulation material as well as the influence of other process parameters.


The litz wire filling factor decreases at constant total copper cross section with single wires getting finer. Since the area associated with intermediate air spaces and enamel increases disproportionately, the litz wire outer diameter and total cross section grows.

The same is true for a constant given outer diameter, since here conversely the copper cross section has to be reduced successively.


The following graphics show this relationship by means of a litz wire with constant copper cross section and several single wires of different diameter.


The graphic Relationship of single wire, litz cross section and OD shows the increase of OD with rising nominal diameter of single wire.


The graphic Relationship of single wire, litz cross section and filling factor illustrates the reduction of copper filling factor with rising nominal diameter of single wire.

By rolling round shaped litz wires to square profiles the filling factor can be further increased, see graphic Comparison of filling factor of round and profiled litz, green line.


In this case the closer proximity of neighbouring windings makes it possible to increase the coil filling factor once again. Use of single wire diameters thicker than 0.1 mm or 38 AWG are preferred, since litz wires constructed of finer individual wires are more sensitive to mechanical stress.



Coil Filling Factor

This factor depends on the litz wire filling factor and packing factor of the coil windings.


Optimised filling factor of a coil by using profiled litz wires can be seen in scheme below

Comparison of Coil Filling Factor with Round and Profiled Litz Wire

Coil filling factor with unit [%] can be calculated as follows

with number of windings
and copper cross section litz wire
and coil winding window cross section

Goto Profiled litz wires as well as litz wire constructions using
Goto Smartbond have more efficient performance due to their high filling factor.

Electromagnetic Fundamentals

Calculation of High Frequency Litz Wire Losses

High frequency losses depend upon the cumulative influences of different loss mechanisms, as well as the expected working conditions of an individual application. Therefore, a simple differentiated formula-like calculation is not possible without a deeper understanding and additional tools.


Right-Hand Rule

A current I flowing through a straight conductor creates a magnetic field B, whose field lines are placed concentrically around the conductor. If a straight conductor is gripped with the right hand and the thumb points in direction of the flowing current I, then the fingers point in the direction of the circular magnet field B. The item B is also called magnetic flux density, which is proportional to the magnetic field intensity H and the material dependent magnetic permeability µ:

with magnetic field constant, permeability of free space

and relative permeability, ratio of the permeability of a specific medium to the permeability of free space

Please see the scheme “Right-hand-rule” below for illustration.
Principle of Right-Hand-Rule


Reactance / Resistance Ratio X/R

RAC/RDC

The complex resistance of a coil is defined as the impedance Z=R+jX which is a vector and consist of the resistance R representing the real component and the reactance X representing the imaginary component.


The current flows more and more along the outer surface of the conductor with increasing frequency. The measured alternating current resistance X, also referred to as RAC rises compared with the direct current resistance R, sometimes referred to as RDC. With increasing resistance values the ohmic losses through alternating current resistance rise and can even exceed the losses through direct current resistance at high frequencies.

The X⁄R ratio, sometimes referred to as RACRDC  ratio describes the alternating current resistance normalized to the direct current resistance (X⁄R ≥1) and is an indicator for the high frequency performance of a litz wire. The X⁄R ratio can be measured or calculated with sufficient accuracy in most cases for a given litz wire construction and is desired to be typically between 1-12 for the respective range of frequency. Along with the correct choice of the single wire dimension, the design of the litz wire construction plays an equally important role.


The graph Litz Wire Rac/Rdc-ratio vs.  single wire-Ø and frequency shows the calculated frequency dependent RAC/RDC trend of five different litz wire constructions with the same copper cross sectional area. It shows the alternating current resistance and the alternating current losses increase with the frequency and the thickness of single wire diameter. At a target frequency of 1 MHz the construction with 50 µm single wires has the best results. In this case, the related RAC/RDC ratio of 1.29 is still significantly higher from the optimum value of 1.0. In this case for example, a first step of improvement could be the selection of a smaller single wire diameter and/or optimization of the bunching construction.


Coil Quality Factor

The quality factor Q measures the freedom of losses of a swinging electrical or mechanical system.


As an example, a higher Q factor indicates a lower rate of energy loss relative to the stored energy of the resonator, the oscillations die out more slowly. A pendulum suspended from a high quality bearing, oscillating in air, has a high Q value. While a pendulum immersed in oil has a low Q value.


In an electrical oscillating circuit consisting of an air coil with inductance L, capacity C and ohmic resistance R, the Q factor measures the relationship between the total energy of an oscillation and its loss of energy per oscillation. An important characteristic of a high quality system is the use of a coil with high Q factor.


The basic loss factor of the coil is its resistance RL. The resistance RL increases with growing frequency, influenced by the frequency dependent skin and proximity effect.


The general relation of the quality can be described as

with different influencing factors which interfere with each other and lead to a frequency dependent trend of coil factor Q, as follows

Coil frequency f [Hz]

The Q factor increases with growing frequency and decreases again at a certain point due to disproportional rising high frequency losses and positive influence by litz wire construction features such as number of single wires, nominal diameter, and length of lay.


Coil inductance L [H]

The coil Q factor increases with growing inductance L (i.e. with increased number of windings N), the negative influence of the resulting increased coil resistance loss R compensates for this effect only at higher frequencies. The self-capacitance of the coil increases with the number of windings.


Coil Resistance R [Ω] dependent of frequency f

The coil resistance ohmic losses are influenced by the total conductor cross section ACCS. The reduction of R leads initially to an increased Q factor, but at higher frequencies comes a stronger decrease in the Q factor due to increasing high frequency losses.


Positive Q factor influence by the litz wire construction may be possible (number of single wires, nominal diameter, length of lay, etc).


The graph Trends of quality factors Q(f) for different planar coils shows the influence of the litz wire construction and coil construction on the trend of coil Q factor by means of three measured planar coils with 12 windings and different Smartbond litz wire constructions.


By reducing the length of lay to 10 mm, indicated as a red line in graph, the coil Q factor can be increased over the complete frequency range in comparison to the blue solid line with length of lay of 26 mm. If the increase of coil Q factor is only necessary for a selective range of frequency like in this example until 150 kHz, it can be sufficient for longer lay length to increase the coil inductance L by choosing a higher number of windings, which are in this example at a range from 12 to 17. Here the Q factor increases for the indicated range of frequency, but drops faster for higher frequencies, compare blue dotted line with red solid line.

Skin-effect and Skin depth

The current causes concentric magnetic fields, both internal and external to the conductor. In the following scheme “Principle of skin-effect and skin depth” this is presented by the magnetic field strength H.


The portion of the magnetic field within the conductor itself create concentric and interfering eddy currents which influence the current flow towards the outer surface area of the cross section with rising frequency f. Due to this effect the so called skin depth δ of the current decreases, where δ is the distance from the conductors’ surface into central direction, at which the current density has dropped to 1⁄e (e=  Euler’s constant) of the amplitude value (see below). Thus the measurable ohmic resistance becomes frequency dependent and rises in value with increasing frequency. Consequently, thermic losses increase proportional to the rise of the electric resistance.

Principle of Skin-Effect and Skin-Depth


The following simplified formula describes the skin-effect only in those cases where δ is less than or equal to a third of the minimal conductor diameter and smaller than a quarter for square constructions.

with

μ0   magnetic field constant, permeability of free space
σ    conductivity of conductor material
f     frequency of electric current through conductor

The table below shows the dependency of skin depth vs. frequency.


Frequency f Skin depth δ (Copper)
10 kHz 0.66 mm
50 kHz 0.30 mm
100 kHz 0.21 mm
500 kHz 0.094 mm = 94 µm
1 MHz 0.066 mm = 66 µm
10 MHz 0.021 mm = 21 µm
100 MHz 0.0066 mm = 6.6 µm

skin depth vs. frequency


More high frequency losses are also caused by the external and internal proximity effect.

Proximity Effect

External Proximity Effect

The effect of current displacement can also be caused by the influence of external alternating magnetic fields of neighbouring conductors or other electrical components, please see the illustrating scheme “External Proximity effect”.


In contrast to eddy currents, which are induced by the skin effect, eddy currents induced by external proximity effect are not rotationally symmetric to the centre of the second conductor. The reason is the alternating magnetic field of the first conductor, which is created by an externally applied electric current through the first conductor.


External Proximity Effect

Thus the induced eddy currents have nearly the same direction at any place on the affected conductor. The eddy currents cause ohmic losses, which lead to an apparent increase of the ohmic resistance as described in the previous section of skin effect. The necessary energy for moving these eddy currents is delivered by the causing magnetic field of the external current. Due to this general interference between eddy currents and its causing magnetic field, additional high frequency losses can also occur in any other neighbouring conductive material.


Internal Proximity Effect

The alternating magnetic fields of the single wires (strands) of a litz wire also create losses in neighbouring strands by eddy currents. Since these fields are created inside the litz wire by the strands itself, this effect is called internal proximity effect but formally seen as belonging to the skin effect, see scheme of current displacement below.


Internal Proximity Effect

As a consequence, the electrical losses of a litz wire through the internal proximity effect increase with rising frequencies and can, in certain cases, even exceed the losses of a solid conductor with the same DC resistance.


The figure “Internal Proximity effect” shows the non-homogeneous distribution of current between neighbouring single wires (current density increasing from blue to red color).


This effect demonstrates that there is an optimal range of frequency for litz wires, in which the losses are lower than for a solid conductor. Beyond this range the use of multiple single wires such as a litz wire can have negative effects.


Both the skin effect and proximity effect are the most important aspects for considering high frequency losses in electrical conductors where the combined influence of inner proximity effect and outer proximity effect is dominating. For a specified working frequency in most cases only a litz wire construction can help to reduce these losses. In this case the construction parameters such as number of single wires, single wire diameter, number of bunching steps, length of lay (pitch) and lay direction have to be specified for each application. At the same time care has to be taken that each single wire occupies each place of the litz wire cross section consistently within a defined length so each wire maintains the same length and resistance. In combination with enamelled single wires litz wires are called high frequency (HF) litz wires in this context.

Single Wire Diameter versus Range of Frequency

The design and construction of a high frequency litz wire and its resulting electrical performance depends upon many factors. Different design approaches can generate similar performance values but experience is required to correctly specify the litz wire construction that can be manufactured economically and consistently. The correct choice of the single wire diameter and number of bundles and sub bundles is therefore an important consideration for each specific application.

The table  Goto Single wire diameter vs range of frequency shows the relationship between recommended single wire diameter and frequency range.

Calculation of High Frequency Litz Wire Losses

Selection of Litz Wire Parameters

Litz wire design - following aspects are covered in this chapter:

I      Litz wire features: Main influences of constructional parameters

II     Selection of single wire diameter

III    Selection of bunching construction

IV   Example: Litz wire for HF-layer winding

V    Comparison: Preselection acc. Charles R. Sullivan


I Litz wire features: Main influence of construction parameters

The performance of a litz wire is determined by its electrical, mechanical, thermal, and chemical features. While the thermal and chemical demands are fulfilled by selection of suitable insulation materials, i.e. enamel, the electrical and mechanical features depend primarily on the chosen parameters of the bunching construction. 


The following table Goto Influence of litz wire parameters on litz wire features gives an overview of the mutual influence of the construction parameters on the most important electrical and mechanical features of a litz wire. 

The table Goto Main influencing parameters for HF-coils shows an overview of litz wire criteria reduced to typical high frequency coil relevance.


Often there can be conflicting demands in each application that have to be thought fully worked out between Elektrisola and the customer. Elektrisola's expertise in litz wire design and litz wire construction coupled with the customers performance expectations for their application results in a final product exhibiting the best aspects of performance, processing ability, and cost effectiveness.


II Selection of single-wire nominal diameter

The correct choice of the single wire nominal diameter is one of the most important aspects in designing a litz wire since this directly affects the performance of the litz wire (see RAC/RDC-Ratio). At the same time, it also influences all mechanical features.



The relationship of the single wire diameter to the dominate operating frequency and the expected skin depth of the device is shown in table


In general, because of the skin effect, the higher the operating frequency, the smaller the nominal single wire diameter has to be. To consider interaction between several bundle diameters ODBundle with skin depths δ in a simplified way, the maximum single wire diameter should be smaller or equal of nearly a third of δ:

Example:  

f  = 200 kHz
δ ≈ 0,172 mm
ØSW  ≈ 0,063 mm


Regarding the influence to the mechanical litz wire performance for equivalent total copper cross sections you can assume the following: 

The smaller the nominal single wire diameter the

  • more flexible and softer the litz wire
  • smaller the minimal bending radius is
  • better the flexlife performance
  • larger the total outer diameter of the litz wire
  • smaller the litz wire filling factor
  • higher the single wire costs

III Selection of bunching construction

When the number of single wires is determined for the application, the specific bunching construction can be chosen. Finer litz wire with a smaller number of single wires (typical < 60) are bunched in one step, thicker and more complex litz wires are bunched in multiple steps.


The bunching construction is specified by definition of length of lay (pitch), bunching direction (S or Z), and the number of bundles and bunching steps. Proper selection of bunching parameters is required to en-sure optimum electrical, mechanical, and processing related Goto litz wire characteristics.


Number of bundles and bunching steps

Parameters like total copper cross section, electrical resistance, or current density define the required number of single wires, which can be divided in several bundles and bunching steps. In consideration of these factors, bundles of the first bunching step can be designed for optimal high frequency performance. In consideration of these factors, the number of single wires in one bundle is typically less than sixty.


There are 4 basic bunching constructions typically used in the final bunching step: The 3, 4, 5 and concentric 7 bundle con-struction.


3, 4 and 5 bundle constructions

These bunching constructions show a good bundling performance with statistically homogeneous distribution of the single wires across the litz wire cross section. These constructions are preferred for optimal high frequency performance. The 5 bundle construction is preferred due to its round profile, since roundness increases with higher number of bundles.

Litz Wire Constructions with 3, 4 and 5 Bundles


Concentric 7 bundle construction

These concentric constructions, also called “1+6 bundling”, show both high flexibility and good dimensional stability and roundness. One bundle always runs centrally, so this construction is less suitable for applications with demand for optimal high frequency performance due to the difference in total resistance between bundles. In order to compensate for differences in bundle lengths for the final bunching step, the pitch direction of the central bundle is opposite to the direction of the concentric outer bundles. Therefore, the pitch direction of the central bundle always represents the pitch direction of the final bunching step.


The previous basic constructions can be combined with each other independently from the number of bunching steps and complexity of electrical and mechanical demands. Special constructions are possible.


Litz Wire Constructions with 7 Bundles

Selection of length of lay and pitch direction:

The length of lay determines the mechanical compactness and the high frequency performance of a bundle. A measure for the tightness of a bunching step is the so called bunching factor. It proportions the length of lay to the outer diameter of the bundle and is typically in the range of 15 mm -20 mm:


Bunching factor

The bunching factor fB can be calculated as follows



Depending upon the pitch direction, the bunching factor for pre-bunching steps is often chosen higher in many cases.


For the selection of length of lay and pitch direction the following basic statements can be assumed:

The smaller the length of lay,

  • the more compact, stiffer, and more dimensionally stable the construction
  • the larger the outer diameter of the bundle
  • if optimal high frequency performance is demanded, an optimal combination of aligned pitch directions for all bunching steps must be chosen
  • counter rotating pitch directions of multiple bunching steps are to be preferred for complex litz wire constructions, where high mechanical flexibility is demanded
  • for wound coils the length of lay should be in the range of the smallest winding diameter


The table Goto Optional litz constructions and features shows an overview of different designs of a litz wire 270 x 0.071 mm and its features.



IV Example: Litz wire for high frequency layer winding

In many cases high frequency coils are layer wound with a small number of windings. Usually those litz wires are served with silk or nylon, since exact winding in layers is only possible with litz wires which keep their round shape on the coil bobbin also with applied winding tension. In some cases also unserved litz wires Goto basic litz wires can be used.  Here special attention is required to select solid and dimensionally stable constructions. Nevertheless, since small elliptical deformation is not avoidable, this has to be compensated by reducing the total outer diameter appropriately. For this reason, with a given maximum outer diameter in this case a served litz wire can show a higher copper cross section than a non-served construction.


Example

An example shows the simplified preselection of a litz wire construction for a layer winding with 30 windings and an operating frequency of 200 kHz. Assumed is a winding window with an effective usable size of width by height: 25.8 mm x 8.0 mm.


Layer construction

Depending on winding technology, layer windings can be constructed in layers with equal or alternating number of windings. For preselection it is possible to roughly calculate with the same number of single wires per layer. This results in 3 layers with 10 windings each for the winding window, and a calculated max. outer diameter for the processed litz wire of dLW=25.8 mm ⁄ 10 = 2.58 mm.

Single wire diameter

The higher the applied operating frequency the smaller the single wires will become. At the same time the costs for the single wire will increase with smaller nominal diameter dSW, as well as for the bunching process with increasing complexity of the bunching construction. Regarding the interaction between the thickness of the sub-bundles and the frequency dependent skin depth δ the ratio dSW ≤ δ/3 can be taken approximately as indicator for the choice of the nominal single wire diameter. In practice it represents a working compromise between frequency performance and costs. Depending on application and technical demands also variations are allowable and common.


In this case a nominal diameter dSW = 0.063 mm is sufficient for a first approach (see example above, section II).


Bunching construction

The total outer diameter of a litz wire depends on the dimensional stability of the individual wires bunched during the winding process. To take this into consideration as empirical value the calculated maximum outer diameter of the processed litz wire dLW=2.58 mm, see above, should be reduced by 10% to dSW=2.32 mm for the serving material and by 15% to 20% to dSW=2.19 mm for the non-served construction.


The non-served litz wire should be bunched compactly, for example that means a small lengths of lay and same pitch direction per bunching step. Constructions with 4 bundles or 5 bundles are preferred.

The table Goto Litz wire design for a HF-coil with specific winding window shows a comparison between suitable served and non-served litz wire constructions for operation frequencies of 50 kHz,125 kHz and 200 kHz and a winding window of width x height = 25.8 mm x 8.0 mm.


In this case, for the desired layer winding

  • Copper filling factor of Goto served litz wire is a little bit smaller compared with the basic litz wire. The number of single wires and thus the total copper cross section of the unserved litz wire still increases.
  • Copper filling factor of the winding window lies typically in the range of 25% to 30%. It is higher for the served litz wire compared with the unserved basic litz wire due to its higher total copper cross section.
  • A construction with 5 bundles enables a symmetrical litz wire structure with sub bundles of significantly less than 60 single wires.


If layer winding is not necessary and a randomly wound coil can be used, it is possible to produce a very flexible and soft litz wire. In this case the coil windings cling to each other, intermediate spaces are filled optimally and thus the copper filling factor of the winding window can be increased once again. Alternatively the usage of
Goto profiled litz wires is possible as well. It is also important to ensure that the copper cross section of the design allows for the required current capacity of the application to be achieved.


V Comparison: Preselection acc. to Charles R. Sullivan

Another method of simplified preselection of litz wires for RF coils is proposed by Charles R. Sullivan from the Thayer School of Engineering in Dartmouth, USA in his study Goto Simplified Design Method for Litz Wire.


The parameters used are the skin depth, operating frequency, number of windings of the winding window, the width of the winding window, and from this calculated constant k is required. This method then proposes a number of suitable litz wire constructions consisting of nominal single wire diameter, a maximum number of single wires for the first bunching step, and the number of bundles for any further bunching step.


This is accomplished in the following steps: 

1. Determination of the skin depth δ calculated from the specific conductor resistance ρ, operating frequency f and the permeability µ0


2. Definition of available width bW of the winding window and the requested number of windings NW of a given coil construction. As an option, construction with an air gap can be considered.


3. Calculation of approximate values for the recommended total number of single wires nSW depending on several nominal single wire diameters dSW. The effectively applied number of single wires for a specific nominal diameter can deviate from the calculated value up to ± 25 %.

4. Selection of single wire nominal diameter and number of single wires is made. Following this selection, a determination is made as to which of the tabular single wire diameters (and number combinations) according to a given number of windings fits into the winding window. A winding window copper filling factor range of 25% to 30% is assumed. Demands regarding litz wire resistance and current capacity have to be determined. Alternative constructions with bigger single wires are also possible.


5. The interaction between skin depth and bundle diameter is taken into account: Calculation of the maximum number of single wires nSW1max of the first bunching step is dependent upon the frequency influenced skin depth δ and the chosen nominal single wire diameter dSW.


6. A part of the calculated total number of single wires, see (3), on several bunching step combinations of 3, 4, and 5 bundle constructions.


A recommendation of certain bunching lengths or bunching directions of the constructions is not given in this context. It is left to the litz wire manufacturers.


The linked table Goto Comparison of design approaches compares the previously given practice-related selection of Elektrisola`s typical constructions with those according to the method of Ch. R. Sullivan. It is related to a layer wound coil and a winding window of 25.8 mm x 8 mm and operating frequencies of 50 kHz,125 kHz and 200 kHz.

The table shows that the litz wires, selected with the practice-related approach, correspond closely with those constructions selected with the Sullivan-method. They cover implicitly the recommended basic features:

  • the total number of single wires of the practice-related samples lies within the range suggested by the Sullivan method.
  • the combined application of 3, 4 or 5 bundle constructions are an integrated part of Elektrisola typical litz wire designs (see table 5).
  • the single wires of the basic bundles in the first bunching step are independent from the respective construction and Elektrisola-typical free selectable within a number of 60 single wires (see table 5).
  • cost reductions are possible with thicker single wires (dSW≤ δ/3) designed constructions (see table 5), which show that the Sullivan recommended ideal basic bundling of ≤ 64 to 36 single wires.
  • apart from cost reduction these constructions can additionally increase the filling factor of the litz wire and of the winding window (see table 5).
  • Through careful selection of bunching length and direction, the product can be optimally specified for each unique application


Therefore, Elektrisola's applied design concepts for high frequency litz wires typically include both practical and theoretical requirements.


Processing of Litz Wire

Connection Technologies for Litz Wires

The connection technology of litz wires often poses a challenge. The table Goto Connection Technologies advises the connection technologies which are generally applicable. Only the most important factors of influence have been classified. Many others, such as enamel type and insulation thickness of the single strands, heat resistance of the additional insulation, the stranding construction (tight/compact or wide/flexible), have been left unconsidered.

Please contact us if information on connections to alloy litz wire is needed or for any other questions.

Determination of Winding Tension on Litz Wire

The table  Goto Max. winding tension on single wire strands shows the recommended maximum winding force. The maximum feasible tension for litz wires can be calculated by multiplying the number of single strands by the appropriate winding tension of the single strand. Regardless of this calculation, for litz wire diameters thicker than 5 mm, tension limits of (420 N) for hard metals and (270 N) for copper and soft metals are recommended.

These values are guidelines and can deviate significantly depending on the manufacturing process.

Spools

A wide variety of spools and packaging materials designed specifically for each spool type is available. The selection of spools is made in close cooperation with the customer taking into account the customer’s production process and the availability of spool types.

There are specific types of spools for wire in the Western World, i.e. Europe and America, and in the Asian World.

Available types of spools can be taken from succeeding tables.

1.    Automotive

In response to an increasing global demand for zero emission vehicles, automotive companies have made huge investments in the development of electric cars. ELEKTRISOLA was the logical choice as an early partner in the development of innovative EV charging components, providing technical support and litz wire to today’s major suppliers. Today, development efforts continue as relentless demands for faster charging times and increased efficiency require imaginative litz wire solutions.

1.1    EV components containing litz wire

  • On-board charger (OBC)
  • DC/DC converter
  • Wireless charger (WC)
  • Charging station
  • Electric traction motor


Litz wire is necessary for the listed components to reduce copper losses at higher frequencies in order to increase efficiency.

Electric Vehicle with optional Charging Systems

Goto Electromagnetic Fundamentals

Higher power densities are possible due to the efficiency improvements from the use of high frequency litz wire. Lighter and cheaper constructions are able to be used which lead to increased battery range for electric vehicles. In addition, cheaper production through material savings is also possible.


Elektrisola offers a wide range of litz wires, which are core materials and determining factors of several electric vehicle components, described in the following chapters.

1.1.1 On-Board-Charger (AC/DC)

General

Electric Vehicle with connected On-Board Charger


The On-Board charger (OBC) transfers the power from the grid into the traction battery. The charger converts the alternating current to direct current which flows into the battery.


If charging from an external high voltage DC charger for very fast charging, the On-Board Charger is bypassed.


The input voltage is the result of the structure of the local grid according the following considerations:


Input Voltage (worldwide)
85V - 275V 1-phase AC
400V 3-phase AC
Output Voltage
170V - 800V DC

Technical Details of the On-Board-Charger

On-Board Charging System

The on-board charger primarily consists of the power factor correction stage (PFC) and the DC-DC converter stage, shown in the figure above.


Before and after the stages two noise filters for electromagnetic compatibility (EMC) are applied.


Power Factor Correction Stage

The PFC stage ensures a sinusoidal current consumption from the public electrical grid.


A boost converter fulfils the power factor correction.


The relevant element for efficiency in this stage is the high frequency coil, which can be realised as a single or dual coil, depending on topology.


The switching frequencies are typically below 50 kHz.


Elektrisola can optimize all litz wires meant for the usage in OBC with the target to achieve the highest efficiencies.


High Voltage DC-DC Converter Stage

The main converter transfers the energy through a galvanic isolated transformer. This high frequency transformer is the key element of the OBC. It transfers the pursued power from primary to secondary side through the air gap, with the highest possible efficiency.

Inductive High Frequency Components

High Frequency Coil for Power Factor Correction

This coil is a central element in the boost converter. The switching frequencies are up to 50 kHz, depended on the converter topology.

PFC Choke with Taped Litz Wire
PFC Choke with Reinfoced Litz Wire
HF Transformer and PFC Choke, coiled with Taped Litz Wire
PFC Choke with Reinforced Litz Wire

Design options of litz wire products for high frequency (HF) coils can be seen in the following links:

  • “Basic”
  • “EFOLIT”
  • “Taped”
  • “Served”

High Frequency Transformer with Galvanic Separation

The transformer consists of at least two coils for primary and secondary side.


The galvanic separation is realised by a conversion from electric to electromagnetic energy transmission. Thus, the power is transmitted over the air gap without mechanical connection.


Galvanic separation is required for electric vehicles to hold the grid potential separate to the vehicle potential due to safety concerns.


A combination of several insulation materials with specific air and creepage distances ensure a predetermined level of breakdown voltage protection.

HF transformer design examples:

HF Transformer with Two-Chamber Bobbin
HF Transformer with Two-Chamber Bobbin
HF Transformer with Intermediate Tape Insulation
HF Transformer with Served Litz Wire and Intermediate Tape Insulation

For high voltage applications with high safety demands, Elektrisola offers the VDE-certified EFOLIT product family.


The following product links show a general overview of optional litz wire types for high frequency transformers:

  • “EFOLIT”
  • “Taped”
  • “Served”
  • “Profiled”

1.1.2 DC/DC Converter

General

Electric Vehicle with HV-LV DC/DC Converter


Electric vehicles have at least two different voltage networks, one with a low voltage battery for all automotive peripherals and another with a high voltage battery for drive train components. The DC/DC converter ensures the bidirectional energy transfer between both networks by voltage conversion with galvanic separation.


Technical Details of DC/DC Converter

High Voltage / Low Voltage DC/DC Converter System


The low voltage EV network is typically based on lead acid batteries with voltage levels between 12 V and 48 V.


The EV high voltage network often includes a lithium based battery and the voltage level varies between 200 V and 1000 V.

Typical power of DC/DC converters is between 1.5 kW and 5 kW.


The power electronics typically use soft switching topologies with a resonant transformer stage with galvanic separation. Bidirectional energy flow is realised by buck/boost topologies between the two stages.


Inductive High Frequency Components

The efficiency of the DC/DC converter is the key to ensure a minimum construction volume and low weight. High switching frequencies help to reduce inductor and transformer sizes. Modern semiconductor technologies make higher frequencies possible, which enables even smaller inductors and transformers.


The switching frequencies range from 100 kHz to 550 kHz. The High Frequency litz wire products are optimised for the application to guarantee high filling factor for high efficiency while also maintaining high voltage durability.


Widely used diameter of single wire strands is 0.05 - 0.1 mm.


Typically values of temperature class varies between B(130°C) and F(155°C).


Litz wire products with taping, extrusion and serving are common.


Which one to choose depends on the individual application parameters e.g., available space and breakdown voltage requirements.

See examples of HF transformers in the following pictures:

HF Transformer with Intermediate Tape Insulation
HF Transformer with Separating Winding Barrier
HF Transformer with Reinforced Litz Wire

1.1.3 Wireless Charger

General

Electric Vehicle with connected Wireless Charger


Wireless charging (WC) or inductive charging (IC) is one type of several wireless power transfer (WPT) methods. It is very comfortable way how to charge an electric vehicle, because the power can be transmitted over large air gaps without any cable connection at high efficiency factors.


The charger uses two planar inductor coils to transmit the energy via a time varying electromagnetic field.

There are two basic different types of wireless charging:

Static Wireless Charging

Principle of Static Wireless Charging


The vehicle is charged while it remains parked. The receiver coil is fitted on the bottom of the car and the transmitter is fitted on or in the ground. For the charging process the receiver has to be aligned over the transmitter during the parking process.


Dynamic Wireless Charging

Principle of Dynamic Wireless Charging


With this future technology the vehicle receives power while in motion above a line of several stationary transmitter pads.


Technical Details

Wireless Charging System


There are two main types of inductive charging:


Inductive Wireless Charging (IWC), also called Inductive Power Transfer (IPT)

The principle of IWC is “Faraday´s law of induction” and was first used in the 18th century. The first electric vehicle was powered by IWC in 1970s.


Similar to the on board charger mentioned above, the first stage of the charger is a PFC stage to ensure sinusoidal current consumption.The wireless transmission of power is realised by mutual induction of the magnetic field between the transmitter and receiver coil. In the primary coil a time varying magnetic field is created by alternating current which induces a voltage on the secondary side and moves electrons through. Subsequently a current flows through the secondary coil where the AC current is rectified and filtered to charge the traction battery.

Since the voltage is only induced when the magnetic field changes, a rapidly alternating current is required. Typical operating frequencies of IWC lay between 20 and 90 kHz.

IWCs operate like a transformer with an air coil instead of metal core.


Resonant Inductive Wireless Charging System (RIWC)

A resonant operated coil is much more efficient, because the impedance decreases at a resonance frequency. As a result, the quality factor is very high, for details see Electromagnetic fundamentals.


Furthermore, with resonance operation, the power can be transferred over longer distances. Weaker magnetic fields can transmit as much power as IWC designs.


For maximum power transfer the resonant frequencies of the primary and secondary coil should be matched. Additional compensation circuits are added to the coils. These electric circuits improve the efficiency further.


Typical operating frequencies of RIWC is between 10 kHz to 150 kHz.

Standards for wireless charging

SAE J2954, set by the Society of Automotive Engineers, defines WC for Light Duty Plug In EVs and Alignment Methodology. See the following table for further detail:


Power Classes for WPT according to SAE J2954
Class Power [kW] Frequency band [kHz]
WPT 1 3.7 81.39 - 90
WPT 2 7.0 81.39 - 90
WPT 3 11.0 81.39 - 90


In development, charging powers of 50 kW are common. For heavy duty applications, multiple 50 kW chargers are combined to reach up to 500 kW per vehicle.


Furthermore, SAE J2954 predefines a minimum efficiency of 85 % when the coils are aligned properly.


The necessary galvanic separation is implied by the wireless transmission, where the transmitter functions as primary coil and receiver as secondary coil.


Different air gap distances are classified according to the following table:


Alignment Methodology for WPT according to SAE J2954
Class Distance [mm] Frequency band [kHz]
Z Class 1 100 - 150 81.39 - 90
Z Class 2 140 - 210 81.39 - 90
Z Class 3 170 - 250 81.39 - 90

Requirements for Planar Coils with Litz Wire

  • Single wire

Typical litz wire constructions are based on single wire strands with diameters between 0.030mm and 0.071mm

  • Temperature class of the single strand

Temperature of the coil should not exceed 100°C, therefore low temperature classes for the single wires are sufficient.

  • Litz insulation

Due to high voltages, tapes are often used.

  • Profiled litz wire

The coils are wound as planar coils to distribute the magnetic field strength to a homogeneous density.

Profiled litz wire is a common way to maintain a high filling factor while maintaining the well distributed magnetic field.

1.1.4 Charging Station (AC/DC)

General

Electric Vehicle with connected DC Charger


Charging stations supply electric energy for the recharging process of the traction battery of plugin (H)EVs. Therefore, two different kinds of charging stations are available to convert AC from the power grid into DC for the EV battery:

Multiple Charging Stations


AC charging station, which acts as energy source for the OBC.

DC charging station, which acts as direct energy source for the EV battery. The charger hereby is part of the charging station.


Technical Details of Charging Stations

AC charging station

For the AC charging process, the chargers are installed on board the electric vehicle (OBC), and details are described in chapter 1.1.1. A special version of AC charging stations are wireless chargers, which are described in chapter 1.1.3.

The on-board charger can be plugged in for electric power connection at either public charging stations or residential charging stations.


Public Charging

Public charging stations are often combined with public parking lots. They are owned by commercial or private ventures, sometimes in partnership with a parking lot owner. The following table gives an overview of the different charging stations.


AC charging options at public charging stations
Type of Plug Voltage / Power
Type 1 120V / 1.92kW or 240V / 3.8kW, 5.8kW, 7.2kW
Type 2 / Combo 2 400V / 3.6kW, 11kW, 22kW, 43kW

Residential Charging

Residential or private charging stations, often referred to as “wall box” chargers are home charging stations, which can be installed at private facilities by an EV owner to charge the vehicle at home, but they are often limited by output power as either higher voltage sockets are not available or the current is limited.


A comparison of different charging options can be seen in the following table:


AC charging options at residential wall boxes
Type of socket Voltage / Power
Domestic Socket 120V / 1.4kW
230V / 2.3W, 3.6kW
400V / 11kW, 22kW, 43kW


DC Charging Station

Charging Station with Type 2 Plug

DC charging stations can achieve power higher than 43 kW because there is no limitation on space and weight inside the charger, as it is the case with the OBC installed in the vehicle.


The charger is integrated into the DC charging station, while the power electronic technology in external chargers is the same as in OBC.


Often modular constructions are used in DC chargers. Thereby the power can be easily increased by adding modules in a parallel circuit to the charging station.


A comparison of different charging options can be seen in the following table:


DC charging options at public charging stations
Type of Plug Voltage / Power
CCS combo 1 < 500V / <80kW
Type 2 / Combo 2 200-1000V / < 350kW
CHAdeMO type 2 500V / <62.5kW
CHAdeMO type 2 1000V / < 400kW
Tesla Super-charger 480V / < 250kW

Inductive High Frequency Components for Charging Stations

For future types of EVs, the industry is planning for charging power up to 450 kW with voltages at 800 V. State of the art technology in power electronics development make voltage levels up to 1000 V possible. These high voltage levels allow for faster and more efficient charging.


These trends lead to high requirements with regard to the insulation of high frequency litz wire in the inductors and transformers of the chargers.


External DC chargers, in comparison to on-board chargers, can supply higher charging power, as the available space is not limited. On-board charging power is limited by weight and space of the components.


Typical litz wire constructions of high frequency transformers in DC chargers use single wires of 0.07 - 0.1 mm diameter, optimised for switching frequencies between 50 and 100 kHz.

1.1.5 Electric Motor

General

Electric Vechicle with Electric Traction Motor


Electric motors are the core of an EV drive train. A great advantage of electric motors is the high torque available from zero speed over the entire range of speeds.


Electric motors already have high efficiencies compared to internal combustion engines (ICE), but still have potential for efficiency optimisation. The motor is driven by an inverter with high power at switching frequencies up to 50 kHz. The resulting copper losses in the coils can be decreased by using high frequency litz wire instead of traditional single wire constructions.

Many different motor concepts exist, which vary in electromagnetic principle but also in mechanical construction and different drive train concepts.


Formula Student Racer with Electric Traction Motor


For electric mobility, motors have to be chosen according to the automotive requirements. The main target is to increase the power density, which leads to higher economic efficiency throughout the EV life cycle.

World Solar Challenge Racer with Electric Traction Motor
Formula Student Racer with Electric Traction Motor

Wheel Hub Motor


Technical Details of Eletric Motors

Electric Propulsion System

In its most basic form, an electric motor consists of a dynamic part, the rotor, which is pivoted on a static part, the stator. Both parts consist of magnetic steel sheets which function as magnetic flux paths. Between both parts a small air gap ensures the ability to rotate.


The stator sheets have teeth geometry (similar to a gear) on the outer circle through which the coils of insulated conductors are wound.


To drive the motor, an inverter controls a current flow through the coils to create a magnetic flux circle from the stator sheets over the air gap to the rotor sheets and back. Through this, the torque is generated by electromagnetic force which converts electric energy into rotational energy.


Coil Components for Electric Motors

The main difference of the coils and the winding process is separated into two kinds of stators:

  1. Stator with distributed windings, where several teeth share one coil
  2. Stator with concentrated windings, where each tooth has its own coil.

Both stator types have different properties and various production methods.


In classic industry motors, the winding consists of only one magnet wire, which is sufficient for lower power. For higher power in EVs higher copper cross sections are needed. This can be achieved by parallel magnet wires or by thick copper bars, called hairpins or ipins. Both solutions bring the disadvantage of high eddy current losses. Litz wire instead reach the desired copper cross sections with high filling factors while also compensating for eddy current losses.


High frequency litz wire can be designed for nearly every motor power level by adding the appropriate number of strands to achieve the target copper cross section.


Stators with Concentrated Tooth Windings with Self-Bonding Litz Wire

Within the conversion from electric power to rotational power, thermal losses occur. These are primarily copper losses, which are split into DC losses and AC losses.


DC losses can be reduced through higher copper cross sections.


The cause of AC losses are eddy currents from skin and a proximity effects.


Different Types of Profiled Litz Wire for Distributed Stator Windings


High frequency litz wire compensates for eddy currents thus improving the efficiency of motors.


Another benefit of high frequency litz wire in motors is the improved heat conductivity, which improves the heat dissipation and mitigates high frequency losses at the same time.

EV traction motors can have a high risk of partial discharge due to the high voltage levels combined with the short and near rectangular switching mode of the inverters. High frequency litz wire can be designed with partial discharge resistivity to ensure long term durability. Taped litz wire and litz wire with special enamel are available.


For distributed windings, profiled litz wire provides a good solution for high filling factor and optimal slot utilisation.


Self-Supporting Coil by Self-Bonding Litz Wire
Wheel Hub Motor with Self-Supporting Coils by Self-Bonding Litz Wire


Concentrated windings can also be produced as self-supporting coils by using litz wire with self-bonding enamel. The litz wire is first wound to a coil, in a second step compressed, and later bonded to fix the wires on the coil with the possibility of resoftening.


Motor coils generally must be in rectangular to fit in the slot with high filling factor. Litz wire can be designed with high mechanically flexibility to reach small winding radius without damaging the insulation similar to a thick single wire.


Frequencies in motors have to be differentiated between inverter switching frequency and stator frequency. The main stator frequency has the most significant influence on eddy current losses and is typically up to 3 kHz, dependent on the speed. High frequency litz wire is designed to that value.

1.1.6 Basic Relations between Litz Wire and Power Electronic

Relation of Switching Frequencies and Inductor Size

The coil size in transformers, inductors, and chokes can be significantly reduced by higher switching frequencies.


Switching frequencies are limited by thermal losses, which occur during the switching process. This is why switching speed had to be shortened to minimise switching losses in power electronics and to reduce coil sizes for higher power densities and to lower volume.


Developments in power transistor technologies have reached significant alteration in switching speed and voltage range due to new semiconductor materials.


Shorter switching times mean that the voltage rising flanks are getting higher, according to the following table:


Power transistor technology Voltage rising flanks dU/dt Voltage range Since Year
Bipolar Transistor Thyristor GTO <1kVµs <300V 1970
IGBT <10kV/µs <1600V 1990
SiC GaN >35kV/µs <1600V 2010

Overview of Semiconductor Developments

Relation of High Voltage Trend and Litz Wire Insulation Materials

The trend of increasingly higher voltages set demanding requirements for the insulation materials of litz wire. In addition, the high voltage potential between the single turns of the transformer needs consistently high insulation from nearby turns.


This is caused by the high frequent switched voltages, especially in converter topologies with resonant circuits.


Elektrisola designs the litz wire individually for each power transformer for optimum efficiency, high voltage protection, thermal conductivity, and filling factor.

Relation of Switching Methods, Breakdown Voltage and Partial Discharge

Voltage is controlled by semiconductor switches to impress current into inductors in all power electronics. These consist primarily of litz wire in high frequency applications. The switching methods differ depending on the application between hard switching and soft switching.


Hard switching means that the switching operation is done at the time when the current and the voltage are not equal to zero. Thereby switching losses are high and durability is low. Partial discharge risk is high because of the significant voltage increase per time on inductors.


Soft switching means that the switching operation is done at the time when the current and the voltage are zero. Switching losses are low inside the transistors and improve efficiency and durability of the power electronics and inductive components. The risk for partial discharge is low.

1.2 Interior Heating

General

Automotive Seat with Litz Wire Heating


Elektrisola was the first to develop litz wires with enamelled single wires for seat heating applications in automobiles to avoid hot spots in seats. Later, different alloys and outside extrusion has been introduced to further improve the litz wire.


Along with heated seats, heated steering wheels are becoming increasingly popular. Originally used in higher classes of vehicles, electric interior heating has now become standard in many classes of vehicles.

Conventional cars with combustion engines utilize the waste heat of the engine for heating the vehicle cabin.


This is not possible in EVs. Therefore, efficient ways of heating with lower energy requirements are needed, e.g.

  • heating of direct contact surfaces such as seats, arm rests, or steering wheel, and
  • radiation from panels near the passengers as efficient design options.


Different Interior Heating Options


For many heating applications, enamelled Litz Wire became the state-of-the-art solution coping with the technical, mechanical, and electrical challenges.

Individually designed litz wires allows designers to achieve precise temperature profiles while also avoiding hot spots in case of individual wire strand breaks within a litz, due to high bending stress or mishandling.


Seat Heating Carrier Element with Litz Wire
Detail of Seat Heating Carrier Element with Litz Wire

Technical details

The most important technical aspects of an enamelled litz wire for heating applications are:

  • No Hot Spots

As explained above

  • Flexlife Performance

Heating litz wires must strongly resist mechanical stress caused by bending and tension during its life time, as seats are typically exposed to tough mechanical impact in daily use. Side bolsters are especially mechanically demanding areas. Optimized wire diameters, usage of alloys, special bunching designs, and optional extrusion jackets are the main influencing design factors to significantly improve flexlife. Strain relief components can also support very small and thin litz wire constructions, where needed.

  • Heating Resistance

The optimal combination of conductor cross section and alloy ensure a precise final resistance and temperature profile in the heated area. The specific litz wire resistance in ohm/m and the temperature coefficient define the final heating performance to the overall length of the heating conductor.

  • Loop Behaviour

The usage of high tensile but less flexible alloy material results in a potentially higher number of loops of the bunched litz wire causing kinks or knots. This might lead to damage during the sewing process. Special bunching designs, optimal wire handling, and bunching methods reduce this effect to a minimum specification. Optional outer extrusion has a positive effect on the loop behaviour.

  • Pinholes

Under thermal and mechanical stress, the insulation of enamelled wires can suffer from pinholes. These are microscopic cracks of the enamelling layer. Pinholes can be avoided by the adequate choice of enamel type, the wire handling during the wire production process, and optimized bunching methods.

  • Chemical Resistance

Liquids such as sweat, soft drinks, milk, coffee, cleaning agents, and others can affect the lifetime of the heating wire. Through diffusion, the insulation can suffer leading to corrosion effects and early failure of the heating element. The combination of correct enamel type, grade, and optional extrusion coating improves the chemical resistance and protects the heating wire against such influences.

1.3 Interior Electronics

General

Wireless charging of cell phones is an increasingly common addition to the passenger cabin as it removes the need to handle a charging cord for the customer.


Automotive Integrated Wireless Charging System


In this market, two technologies for wireless charging systems are widely used:

Inductive Wireless Charging System

The wireless transmission of power is performed by mutual induction of magnetic fields between a transmitter and receiver coil. In the transmitter coil an alternating current creates a time varying magnetic field, which is radiated in all directions. The highest power transfer efficiency in this system is achieved when a receiver coil with identical dimensions to the transmitter coil is placed precisely on top and a few millimetres away from the transmitter coil.


The main advantage of inductive wireless charging systems is a relatively high efficiency, when transmitter and receiver are tightly coupled.


This is preferred when a high efficiency from the charging system is needed.

Resonant Wireless Charging System

This system is still “inductive”, in the sense that a magnetic field generated by the transmitter coil induces a current in the receiver coil. However, the principle of transmitting energy is done at higher frequencies than inductive systems and relies on both transmitter and receiver coils operating at the same resonant frequency. In a resonant wireless charging system, a type of energy tunnel is created between the coils, which allows an energy transfer at larger distances, between multiple coils, and in multiple directions.


There is some loss of efficiency in the system due to flux leakage even at closely positioned coils.


Therefore, this system is preferred when convenience of easy positioning is required from the system.


Technical Standards

There are 2 main standards for wireless charging for consumer electronics:

  • Qi

(Developed by the Wireless Power Consortium “WPC”)

Technology: Inductive and Resonant

Operating Frequency: 85 kHz - 205 kHz

Transmitter Power Levels: 5 W -15 W

  • Rezence

(Developed by the Alliance for Wireless Power “A4WP”)

Technology: Resonant

Operating frequency: 6.78 MHz

PTU (Power Transmitter Unit) Power levels: 2 W - 70 W

PRU (Power Receiver Unit) Power levels:

3.8 W - 50 W

Wireless Charger Components in the Qi Standard

Power Transmitters in the Qi standard are specified from design types from A1 to A34 (having one or more Primary Coils) and design types from B1 to B7 (having an array of Primary Coils). The different design types differ from one another among other things in coils´ size and shapes (round, oval, and square), all having litz wires with differ-ent numbers (from 24 to 180) of single wires of 0.08 mm.

Even though Power Receivers are not defined by the Qi standard, it sets some examples using similar litz wire configu-rations as the Power Transmitters.


Typical Litz Wire Products

For typical litz wire products for wireless charging designs see the following links:

  • “Self Bonding Wire”
  • “Basic”
  • “Served”
  • “Smartbond”
Litz Wire Planar Coils embedded in a PCB of Wireless Charging System
Planar Coil with Self-Bonding Litz Wire in a Smartphone Wireless Charging System

2. Industry

2.1 Switch-Mode Power Supply

General

Switch mode Power Supplies (SMPS) supply electric and electronic devices with specific stepped down direct current (DC). Due to their high efficiency, compact and light design and wide range of input voltage, SMPS are used in many industrial applications.


Examples are:

  • charging systems
  • laboratory and test equipment
  • welding technology
  • medical and IT systems


Technical details

Power source is the public AC grid whose power is converted into High Frequency (HF) power using fast switching semiconductor topologies, see picture 1 below. To translate the high frequency input voltage to a lower AC voltage level a high frequency transformer is needed. Its dimensions can be reduced by increasing the working frequency (30 kHz - 500 kHz).


Switched Mode Power Supply System

Usually, high frequency transformers work with layer windings and small numbers of turns. The usage of high frequency litz wires is necessary to efficiently reduce high frequency losses at higher frequencies. For safety reasons the primary (input) side of the transformer has to be separated from the secondary (output).


Typical Litz Wire Products

HF Transformer with Separated Bobbins


Constructional insulation elements like separating barriers and flanges can be implemented for keeping electrical air and creepage distances.

HF Transformer with separating Winding Barrier


A more compact and space saving technical approach is the usage of reinforced insulated winding wires (FIW). In this case air and creepage distances can be reduced, smaller and light designs with higher power density can be realized.


    To meet the increasing demand for higher working frequencies and compact transformer dimensions Elektrisola offers the following design options:

    • Silk or nylon served litz wires guarantee high flexibility and form stability for optimum layer winding performance.
    • High frequency litz wires with additional tape insulation offer high breakdown voltages up to 10 kV.
    • Elektrisola’s reinforced insulated and VDE-certified product family EFOLIT® covers SMPS - designs with very high safety demands.
    • Rectangular or square profiled (compressed) litz wires ensure optimal copper filling factor for both litz wire and coil winding.

    2.2 Sensors

    General

    The optimal High Frequency (HF) performance of enamelled litz wire and the wide range of possibilities for unique designs make litz wire an optimal material for sensors and antennas.


    Examples are

    • Inductive proximity sensors
    • Metal detection sensors
    • Coils for RFID-Systems
    • Coils for Near Field Communication

    Technical details

    Radio Frequency Identification (RFID)

    The reading device creates a high frequency field such as a gate that acts on the antenna of the transponder. Voltage is induced in the antenna; the chip is activated and creates an individual response by field attenuation. The response is received by the reader.

    Planar Coil in a RFID Transponder
    RFID Chip Reader

    Near Field Communication (NFC)

    NFC defines different communication protocols for a communication between two electronic devices over a distance of 4cm.


    The low speed connection can be used for the following exemplary applications:

    • Contactless payment systems
    • Information exchange
    • Identity and access tokens
    • Smartphone automation
    • NFC tags


    NFC Ticket Vending Machine

    Inductive Proximity Switches

    The function of the sensor is based on an oscillating circuit consisting of a coil and capacity as characterized by the Q-factor. The coil itself creates an electromagnetic field that covers the area of detection. In the presence of a conductive element in the area, the Q-factor is changed due to eddy current losses.


    The loss of field energy is detected by electronic circuits of the proximity switch and the element is confirmed.


    RFID devices and proximity switches are used in logistics, process automation, and railway technology.


    The antenna (or field generating coils) are usually implemented without coil bobbins or carrier elements. In these air coils based on selfbonding technology, served or extruded litz wires are used.

    Proximity Switch

    Typical Litz Wire Products

    Elektrisola offers the following design options:

    • High frequency litz wires with selfbonding enamelled wires allow for the smallest bending radiuses with high copper filling factors.
    • Litz wire variants with Smartbond overcoat ensure easy hot air bonding with the highest copper filling factor.
    • Thermal bondable silk or nylon served litz wires from Elektrisola guarantee optimal form stability and windability for air coils.

    3. Medical

    3.1 Hearing Aids (connection cables)

    General

    Hearing aids aim to be as small and light weight as possible to enhance the user’s comfort and minimize visibility. Traditional connecting cables are typically replaced by much lighter litz wires as single wires are insulated and can be used as a cable.


    Different Types of Hearing Aids
    Hearing Aid with Litz Wire Cable
    Hearing Aid Micro Cable

    General Requirements

    • Silver coating as protection against environmental influences
    • Bright colors due to the silver surface beneath
    • Very consistent solderability
    • High bending performance
    • Very strong with optional reinforcement fibers
    • Very smooth extruded surface
    • Highest requirements on tight diameter tolerances (roundness and size)
    • Perfect stripping ability for electrical contact


    Hearing Aid Micro Cable with Color Coded Wires

    3.2 Other Applications

    Diagnostic System with Piezo Electric Transformer for Ultrasound
    Secondary Coils for Magnetic Resonance Imaging
    Wireless Charger for Medical Devices
    Wireless Charger for Medical Devices
    Surgical Tools and Instruments

    4. Appliance

    4.1 Inductive Cooking

    General

    An electromagnetic alternating field is induced in the bottom of a pot or pan and is transformed into thermal energy by eddy current losses. Thermal losses in the transmitting coil are very small, so the heating time is short and the surface of the cooking hob remains cold.


    Technical Details

    Operating frequency range: 20 kHz - 60 kHz


    Inductive Cooking Hob with Field Generating Planar Coil and HF Transformer


    1. Bottom of cooking pot made from ferrous material
    2. Glass ceramic (hob surface)
    3. Alternating electromagnetic field
    4. Inverter
    5. Inductive litz wire coil
    6. Electrical grid

    Inductive Cooking Components

    Planar Coil with Carrier
    Planar Coil with Self-Bonding Litz Wire

    Inductive Conductor Requirements

    • High temperature class
    • High break down voltage
    • Mechanical strength
    • High filling factor (compressed winding)


    Typical Litz Wire for Inductive Cook-ing Hobs

    • High frequency planar coils with basic litz wire
    • Primary materials: copper, aluminium, and copper clad aluminium
    • Single wire diameters from 0.18 mm - 0.4 mm
    • 20 - 120 strands (depending on the size of the cooking hob and the op-erating frequency)
    • High temperature odourless resistant enamels (≥ 200 °C).
    • Optional profiling: Can be used to increase the filling factor (profiled litz)

    5. Renewable Energy

    5.1 Solar Inverter

    Solar Panels with Inverter Units

    General

    The solar inverter is the heart of a solar power system. It converts DC current from the solar panels into the grid alter-nating current.


    At the same time electronic control in the inverter monitors the whole solar power system and the grid.


    A solar inverter has the following tasks:

    1. Efficient energy conversion from lower voltage DC to higher voltage AC
    2. Power optimisation
    3. Monitoring of power and temperature data
    4. Communication to smart energy systems
    5. Temperature management to avoid overheating of solar panels

    Technical Details of Solar Inverters

    Grid Solar Inverter System


    Solar inverters can be categorized, dependent on three properties:

    1. Power

    The power ranges from a few kW to MW range. Typical values for private households are 5 kW, for industrial 10-20 kW and 500 kW and up for solar power plants.

    1. Module interconnection

    on the DC side solar inverters can be connected to a string, multistring, or central topology, dependent on the power and efficiency requirements.

    1. Circuit topology

    The inverter can be designed for single phase AC grid or three phase AC grid, and can be either with or without galvanic separation.

    Galvanic separation is realised with a transformer between the DC and AC side. By doing this the module stack can be coupled to the ground to prevent alternating voltage potentials, which is compulsory in some countries.

    Inverters without galvanic separation have the DC and AC side electrically connected, which leads to the advantage of higher efficiencies, but the disadvantage of alternating voltage potentials against ground which limits the lifetime.


    Litz Wire Requirements for Solar Inverters

    HF transformer with separated Bobbins and reinforced Litz Wire


    • Temperature index TI = 155 °C
    • High mechanical robustness
    • Good flexibility
    • High dielectric breakdown voltage

    6. Consumer electronic

    6.1 Switched Mode Power Supply

    General

    Switch Mode Power Supplies (SMPS) supply electric and electronic devices with specific down stepped direct current (DC). The key element for voltage down stepping operation is a High Frequency (HF) transformer.


    Due to their high efficiency, compact and light design, and variable input voltage, SMPS are wide spread not only in industry applications, but also in the consumer area.


    Examples are:

    • Smartphone Charger
    • Notebook Charger
    • Personal Computer
    • Audio and Multimedia Systems
    • Televisions
    • Household Appliances
    • Charging Systems


    Technical Details

    Usually there are two locations to place the SMPS unit to the consumer device:


    External (cable based)

    SMPS in an External Notebook Chargers
    SMPS in Smartphone and Notebook Chargers


    Internal, where the electronic devices and inductive components are directly mounted on the main board

    Printed circuit board with SMPS


    See examples of high frequency transformers of SMPS in the following pictures:


    HF Transformer with reinforced Litz Wire
    HF Transformer with Basis Litz Wire and EMV Shield
    HF Transformer with reinforced Litz Wire
    HF Transformer with reinforced Litz Wire


    For more technical details and litz wire product information please refer to

    SMPS Industrial Application.

    (see point 2.1)

    6.2 Smart Textiles

    Litz wire is used for special applications in Smart Textiles. Generally, very thin litz wires are used, as the wire must blend into the fabric and not disrupt the base texture. At the same time, rough handling in daily use, as well as washing or cleaning, creates a very demanding environment.


    General

    • Sports and casual clothings
    • Protective gear for security forces, RFID Identification
    • Building security technology
    • Festive clothes/uniforms
    • Mechanical engineering/monitoring of multi material systems, medical engineering

    Technical Details

    • Small outer diameter of litz wire
    • Textile characteristics, fine structures
    • High tensile strength, splice, and flex life performance
    • Chemical stability
    • Color retention


    For use in textile applications special enamelled wires are needed, see

    https://www.textile-wire.ch/en/home.html

    Typical Characteristics of Smart Textile Wires

    • Single wire diameter: 0.02 mm - 0.071 mm
    • Number of single wires: 2 - 100
    • Conductor material: copper and alloys with and without silverplating
    • Insulation: Polyurethane based enamels, extrusion coatings with low melting points
    • Optional: Bare single wires
    • Optional: Strain reliefs
    • Optional: Nylon or silk serving for mechanical support

    6.3 Wireless Charging

    General

    Smartphone on Wireless Charger

    Wireless chargers are found in the market as wireless charging pads, built-in wireless chargers for furniture, or as USB docks with a wireless charger. The charger needs a receiver on the user’s electronics, such as a smart phone, watch, etc.


    Wireless chargers offer the following advantages for consumer electronics:

    • No cables
    • No need to have the right connector
    • Reduced wear of charging port

    In this market two technologies for wireless charging systems are widely used:

    Inductive Wireless Charging System

    The wireless transmission of power is performed by mutual induction of magnetic fields between a transmitter and receiver coil. In the transmitter coil an alternating current creates a time varying magnetic field, which is radiated in all directions. The highest power transfer efficiency in this system is achieved when a receiver coil with identical dimensions to the transmitter coil is placed precisely on top and a few millimetres away from the transmitter coil.


    The main advantage of inductive wireless charging systems is a relatively high efficiency, when transmitter and receiver are tightly coupled.


    This is preferred when a high efficiency from the charging system is needed.


    Resonant Wireless Charging System

    This system is still “inductive”, in the sense that a magnetic field generated by the transmitter coil induces a current

    in the receiver coil. However, the principle of transmitting energy is done at higher frequencies than inductive systems and relies on both transmitter and receiver coils operating at the same resonant frequency. In a resonant wireless charging system, a type of energy tunnel is created between the coils, which allows an energy transfer at larger distances, between multiple coils, and in multiple directions.


    There is some loss of efficiency in the system due to flux leakage even at closely positioned coils.


    Therefore, this system is preferred when convenience of easy positioning is required from the system.


    Technical Standards

    There are 2 main standards for wireless charging for consumer electronics:

    • Qi (developed by the Wireless Power Consortium “WPC”)
      • Technology: Inductive and Resonant
      • Operating Frequency: 85 kHz – 205 kHz
      • Transmitter Power Levels: 5 W -15 W

    • Rezence (developed by the Alliance for Wireless Power “A4WP”)
      • Technology: Resonant
      • Operating frequency: 6.78 MHz
      • PTU (Power Transmitter Unit) Power levels: 2 W - 70 W
      • PRU (Power Receiver Unit) Power levels:
      • 3.8 W - 50 W

    Wireless Charger Components in the Qi Standard

    Power Transmitters in the Qi standard are specified from design types from A1 to A34 (having one or more Primary Coils) and design types from B1 to B7 (having an array of Primary Coils). The different design types differ from one another among other things in coils´ size and shapes (round oval and square), all having litz wires with different numbers (from 24 to 180) of single wires of 0.08 mm.


    Even though Power Receivers are not defined by the Qi standard, it sets some examples using similar litz wire configurations as the Power Transmitters.

    Typical Litz Wire Products

    For typical litz wire products for wireless charging designs see the following links:

    • “Self Bonding Wire”
    • “Basic”
    • “Served”
    • “Smartbond”
    Planar Coils embedded in a PCB of Wireless Charging System
    Planar Coil with Self-Bonding Litz Wire
    Planar Coil with Self-Bonding Litz Wire in a Smartphone Wireless Charging System

    7. Special cables

    General

    Litz wires can be used in similar ways as a cable because the individual strands of enamelled wire have a very strong insulation. Extrusion of the litz wire can be used to further strengthen the mechanical and electrical properties, but also adds weight and volume. There are some applications that use a litz wire with enamelled wires directly as a cable, having advantages on diameter, weight and volume. Colored single wires help to differentiate the individual strands in the litz wire for the further processing.


    Typical Litz Wire Components

    Examples for special litz wire conductors and cables are

    • High frequency litz wires with superfine and very complex bunching construction, for example 600 x 0.010 mm or 25.000 x 0.20 mm.
    • Micro cables with the smallest possible outer diameters of mere millimetres, for example 7 x 0.010 mm.
    • Diagnostic cables with thermally fixed selfbonding enamelled wires. For example twisted pair wires (e.g. 2 x 0.020 mm) or planar Multifilar Wires.
    • Trailing cables with maximum flexibility and low friction constructions and enamel coatings.
    • Vibration resistant signal line with conductors based on special alloys (e.g. 7 x 0.04 mm).
    • Litz wire for headset cables which are extruded together to get a thin light weight cable.
    • High frequency litz wire with special color coding.


    Microcable with Extruded Coating
    Multifilar Color Coded Wire
    Color Coded Litz Wire

    Services

    ELEKTRISOLA your Partner for HF-Litz Wire

    Partnering with our customers and offering tailor-made services is our goal. Starting with the first step of designing an optimal litz wire up to the efficient delivery of high quality products, we always make sure our customers receive the utmost service.


    Technical Application Consulting

    ELEKTRISOLA’s philosophy is to be a customer's partner rather than just a supplier. Therefore, a key focus for us is litz wire related R&D and technical support. Our customers can utilize our global resources in terms of Customer Support and Application Engineering for litz wire design and Engineering Support to develop innovative and cost effective solutions for specific customer applications.

    Litz Wire Handling

    Mishandling of litz wire can easily cause damage to the litz wire or to the spool of the litz wire, which creates problems in dereeling.

    Please handle the spools, boxes and pallets extremely carefully. Although the material is heavy it is very sensitive to mishandling.

    Typical damages are:

    1. Mechanical impact on the spool or spool flange which often leaves a whitish mark in the plastic of the spool. Such a hard impact could either displace the windings or cause the windings to fall down the spool. Mechanical damage of the flange can also break wire during dereeling because of rough or sharp edges on the spool flange.

    Deformation of Spool Flange

    2. Displacing the wire package. Displacement of the litz wire windings on the spool caused by shock loads resulting from dropping the spool or carton can cause dereeling problems from the winding pattern disruption on the spool.

    Displacement of the Wire Package on Spool

    3.  Fallen windings. Can be created by rough handling as described above under ref. 1 and 2. Winding will fall into each other, creating knots followed by wire breaks.

    Fallen Windings

    4.  Damaged winding. Very often caused by mechanical contact of other spools during handling or transportation of a single spool or by lifting the spool from the box crooked, thus scraping over the edge of the box. Will create dereeling problems and damage the litz wire structure.

    Damaged Windings

    Samples

    Looking into total system cost and system performance an optimized litz wire design can make the difference.  ELEKTRISOLA takes pride in our customised litz wire constructions and our ability to create samples quickly. Just talk with us and we will gladly support you with samples on short notice that meet your needs.


    Logistics

    Outstanding production know-how, significant production capacity, high efficiency, short communication paths, and long-term experience in handing, packaging and shipping of sophisticated wire make ELEKTRISOLA the most trustworthy partner when it comes to short lead times and reliable shipments.

    Stock Items

    The stock list contains sample quantities for tests and simple simulation. It only represents a selected small range of litz wire products. Qualified series products can therefore differ! Please contact us for individual solutions and custom-specific litz wire designs.

    FIW Info

    General

    About

    FIW (Fully Insulated Wire) is an alternative wire to build switching transformers typically using TIW (Triple Insulated Wires). Due to the big choice of overall diameters it allows to produce smaller transformers at lower costs. At the same time FIW has better windability and solderability compared to TIW.


    FIW is produced in a multiple coating process, which guarantees insulation without any defects.


    ELEKTRISOLA FIW is approved as MW85C and according to OBJT2. It has been sold successfully for several years to the automotive industry and for applications which do not require UL approval acc. to UL 60950. As Elektrisola FIW is approved as MW85C it can be used by many Insulation Systems according to UL 1446. The Safety Standard IEC 62368-1 Edition 3 is approved and allows the use of FIW. The old Safety Standard IEC 60950 was withdrawn end of 2020.

    The FIW Wire

    Elektrisola developed a product based on a modified polyurethane with a life time acc. to IEC 60172 of 20,000 h at 180 °C, short designation P180. It is produced with multiple passes of individual covering of insulation and is in-line tested for high-voltage-continuity to assure the perfect insulation without any insulation defects.


    FIW is defined with many Grades specifying different insulation thicknesses. FIW 3 is the smallest defined build, while FIW 9 is the biggest.


    Elektrisola Standard FIW Grades ex stock are FIW 4 and FIW 6, as they give a good compromise between good technical performance and affordable costs. 

    Specifications

    FIW is specified in different specifications. Basically there are Standards for enamelled wires, such as IEC and NEMA, but there are also Safety Standards, such as the old IEC 60950, replaced by IEC 62368-1, and UL Safety Standards, such as UL 2353.


    In addition, some values are also specified in product standards as the Transformer Standard acc. IEC 61558-1.

    Product

    • IEC 60317-56 and 60317-0-7

    • NEMA MW85c

    • UL 2353

    Test Conditions

    • IEC 60851

    • IEC UL 60950 Annex U

    • IEC 61558-1

    • IEC 61558-2-16

    • UL 2353

    Advantages of FIW

    • choice of different insulation builds (with different insulation thicknesses) allows optimization of products like smaller transformers and gives a cost advantage
    • excellent solderability
    • superior windability
    • high temperature class of 180 °C, thermal life time acc. UL 60950 Annex U tested in transformers for temperature class 155 °C/130 °C

    • proven insulation system acc. UL 1446 of enamelled wires also with UL, used over many years 

    Example 0.25mm FIW 6, 390°C, 2.4 sec.

    Production Process

    The basic production process is similar to a normal enamelled wire  Goto  Production Process, but has many more single wire passes - up to 120 - to generate the finally very thick enamel layer, as shown in below photo, where always 3 alternate layers were coloured to demonstrate the big number of layers.


    Multiple layers of a 0.25 FIW 7


    In addition, every production line is equipped with an In-Line High Voltage Continuity Tester, which checks the insulation of the wire over the complete length permanently to guarantee that there is no insulation fault.

    Packaging

    The FIW wire is spooled on standard spools used in Europe and in Asia 

    Goto  Spools/Packaging.


    Delivery ex Stock

    Many FIW wire configurations can be supplied ex stock. In the table  Goto  Dimensions the grey highlighted diameters and builds are typical stock items.

    Technical Data

    Standardized Properties of FIW

    IEC 60317-56 describes a full Enamelled Wire Specification with mechanical, electrical, thermal and other characteristics like soldering

    Goto  FIW acc. IEC 60317-56

    UL 2353, rather similar to IEC 60950 Annex U, gives mainly electrical properties which mostly are rather short-term tests

    Goto  FIW acc. UL 2353

    The new Safety Standard IEC 62368-1 continues with the same requirements, taken partly from the Transformer Standard IEC 61558-1 for FIW.

    Breakdown Voltage

    Breakdown Voltage (BDV) values for FIW will vary depending upon which standard is used to calculate these values.

    When using the enamelled wire standards for FIW (IEC 60317-0-7 and 60317-56) the BDV is calculated using the minimum insulation increase per size, (min. insulation increase = min. OD including insulation – nominal bare wire dimension).

    Goto  BDV calculation acc. IEC 60317-0-7

    The minimum values can be found in IEC 60317-56

    Goto  Minimum BDV acc. to IEC 60317-56

    The Transfomer Standard IEC 61558-2-16 was finally corrected as the BDV calculation in the old version mistakenly used the minimum insulation increase divided in half, erroneously resulting in approximately half the BDV values as the magnet wire standards.


    IEC 61558-1 as a new version of IEC 61558-2-16 has already been released, correcting errors (like the BDV calculation described above) found in the previous version. One major difference: The new version requires the FIW to maintain durability for dielectric strength for one minute at 180 °C with a factor of 0.85 compared to IEC 60317-0-7. Here the dielectric strength is measured by Breakdown Voltage (rms) at room temperature.

    Goto  Minimum BDV acc. to IEC 61558-1

    IEC 62368 follows the BDV values of IEC 61558, but does not specify 180 °C as test temperature as IEC 61558

    Goto  Minimum BDV acc. IEC 62368

    Goto  Comments on different BDV standards


    Calculation of Breakdown Voltage

    The minimum breakdown voltage acc.  to IEC 60317-0-7 can be calculated with the nominal diameter and the FIW Grade by tool 

    Goto  Tools for Calculation of BDV

    Dimensions

    Dimensions of FIW depend on the Insulation Grade, which describes the amount of insulation on the bare wire

    Goto  Dimensions FIW

    Voltage or necessary FIW Grade by diameter  for a given voltage can be calculated by a calculator 

    Goto  Calculator BDV/Grade

    Weight / Length

    Due to the extraordinary thickness of the insulation of FIW the length of a certain quantity of FIW and the weight of a wire with a certain length deviate remarkably from experiences with normal enamelledcopper wire.


    The length of 1 kg of FIW 3 - FIW 9 for nominal diameters in the range of 0,071 - 0,710 mm - assuming nominal outer diameters acc. to IEC 60317-56 - can be looked up in the  Goto  FIW Length Table on the next page in km/kg.


    The weight of 1 km of FIW 3 - FIW 9 for the same range of nominal diameters - with nominal outer diameters acc. to IEC 60317-56 as before - can be looked up in the 

    Goto  FIW Weight Table

    The weight or length of a specific FIW wire can be checked by a calculator 

    Goto  Calculator Length/Weight

    Approvals




    • UL Insulation Systems acc. UL 1446
    • IEC 61558-2-16 for transformers (SMPS) specifies use of FIW and IEC 61558-1
    • IEC 62368-1 as new Safety Standard, replacing IEC 60950


    LW Product Range

    Litz Wire

    Litz Wire Types

    Type
    Type
    Basic

    Taped

    Extruded

    Profiled

    Served

    With strain relief

    Diameter of Magnet Wire 0.010 - 0.500 mm 0.040 - 0.500 mm 0.032 - 0.500 mm 0.200 - 0.500 mm 0.020 - 0.300 mm 0.032 - 0.500 mm 0.030 - 0.300 mm
    No. of wires 2 - 25.000 strands max. 25.000 strands max. 700 strands max. 25.000 strands 2 - 23.000 strands max. 500 strands max. 23.000 strands
    Total outer diameter 0.095 - 15.0 mm 1.0 - 10.0 mm 0.4 - 1.2 mm max. 10.0 mm
    Silk: 0.071 - 4.0 mm
    Nylon: 0.071 - 10.0 mm
    0.4 - 1.2 mm 0.5 - 5.0 mm
    Total copper cross section 80 mm² 36 mm² 0.5 mm² 36 mm²
    Silk: 6 mm² Nylon: 36 mm²
    0.38 mm² up to 10.6 mm²
    Outer coating - PET (Thermal class A-F)
    PEN (Thermal class B-H)
    PI (Thermal class H-C)
    Polyamide
    Polyester
    Polyurethane
    optional with/out serving
    Serving: Nylon
    Taping: PET,PEN,PI
    Natural silk
    Nylon
    Polyester
    optional with/out extrusion: Polyamide
    Polyester
    Polyurethane
    Taping: PET
    PEN
    Additional options -
    Overlapping of tape: 50 or 67 %
    No. of tapes (max.) 2
    Wallthickness overcoat: 0.1 - 0.4 mm
    Min. construction(H x W): 1.2 x 1.2 mm
    Ratio hight:width (H : W): 1 : 2 (1 : 3, where appropriate)
    Tolerance (+/-): 0.1 mm
    No. of layers (max.): 2
    Multifilament: optional:
    PES 30 - 450 dtex
    LCP Fmax = 1.53 - 99.2 N
    Aramide Dension: 3.3 - 12.4 %
    Taping construction: 3 layers (min.)
    Characteristics Flexible optimization of construction and conductor material possible acc.:
    • HF-performance, resistance
    • high flexibility, flexlife-performance
    • form stability
    • very high electric break down voltage
    • high mechanical robustness
    • optimal round form stability (e.g. for layered winding)
    • high mechanical robustness
    • high flexibility
    • good resistance against water, oils and grease
    • increased electric break down voltage
    • increase of copper filling factor up to 20 %
    • high flexibility and dimensional stability
    • good windability
    • optional with/out outer coating
    • optimal round form stability
      (e.g. for layered winding)
    • specified distance between windings
    • resistance against splicing in combination with high flexibility
    • support for impregnation- & potting processes
    • very high tensile strength possible
    • smallest litz wire constructions with highest tensile strenght and flexlife performance
    • very good processability also for very small litz wires
    • combination of all conductor and coating materials possible
    VDE-certified acc.: DIN EN 60950/U, 62378/J, 61558/K, 62368/J, 60601/L
    Max. working voltage: 1000 Vrms / 1414 Vpeak
    Max. frequency: 500 kHz
    Thermal class: F/155 °C, H/180 °C
    Typical applications Transformers, Chokes, RF-tranducers, medical applications, sensors, electronic ballasts, switching power supplies, heating applications Inverter, RF-transformers, RF-transducers, RF-chokes, Inductive charger Heating applications, Smart Textiles, Patient Comfort Induction cooking hobs, RF-transformers, RF-chokes, E-motors Inverter, RF-transformers, RF-transducers, RF-chokes, Inductive charger Automotive industry, industrial applications, medical applications, Smart Textiles, special applications for technical textiles, sports equipment Inverter, RF-transformers, RF-transducers, RF-chokes, Inductive charger
    See details

    Global Footprint

    Global Footprint

    ELEKTRISOLA is a true global producer of fine enamelled wires with 9 plants in the 3 most important continents for the automotive and the electrical industry using the same state-of-the-art machines to produce the same high quality standard.

    Advantages of Elektrisola Global Footprint

    1. Worldwide supply of identical quality

    • same management of ownership
    • same products
    • same in-house designed machines
    • same processes
    • same work instructions
    • same quality approvals (ISO, IATF)
    • same UL-approvals
    • same test procedures
    • ideal for global projects
    2. Safety of supply
    • easy backup of other Elektrisola plants with identical products

    3. Local production and supply

    • fast and efficient delivery
    • local currency
    • local sales and service

    4. Local service

    • local engineering support for R&D and process improvement
    • fast working as in the same time zone
    • easy communication in local language
    • assistance for global projects with local production

    5. Environment friendly

    • short transportation distances
    • local spool recycling
    • worldwide system for emission control (sniff during your visit)

    Elektrisola Locations

    Plants
    Warehouse
    Sale office